// Formatting library for C++ - the base API for char/UTF-8
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.

#ifndef FMT_BASE_H_
#define FMT_BASE_H_

#if defined(FMT_IMPORT_STD) && !defined(FMT_MODULE)
#  define FMT_MODULE
#endif

#ifndef FMT_MODULE
#  include <limits.h>  // CHAR_BIT
#  include <stdio.h>   // FILE
#  include <string.h>  // strlen

// <cstddef> is also included transitively from <type_traits>.
#  include <cstddef>      // std::byte
#  include <type_traits>  // std::enable_if
#endif

// The fmt library version in the form major * 10000 + minor * 100 + patch.
#define FMT_VERSION 110002

// Detect compiler versions.
#if defined(__clang__) && !defined(__ibmxl__)
#  define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
#else
#  define FMT_CLANG_VERSION 0
#endif
#if defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER)
#  define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#else
#  define FMT_GCC_VERSION 0
#endif
#if defined(__ICL)
#  define FMT_ICC_VERSION __ICL
#elif defined(__INTEL_COMPILER)
#  define FMT_ICC_VERSION __INTEL_COMPILER
#else
#  define FMT_ICC_VERSION 0
#endif
#if defined(_MSC_VER)
#  define FMT_MSC_VERSION _MSC_VER
#else
#  define FMT_MSC_VERSION 0
#endif

// Detect standard library versions.
#ifdef _GLIBCXX_RELEASE
#  define FMT_GLIBCXX_RELEASE _GLIBCXX_RELEASE
#else
#  define FMT_GLIBCXX_RELEASE 0
#endif
#ifdef _LIBCPP_VERSION
#  define FMT_LIBCPP_VERSION _LIBCPP_VERSION
#else
#  define FMT_LIBCPP_VERSION 0
#endif

#ifdef _MSVC_LANG
#  define FMT_CPLUSPLUS _MSVC_LANG
#else
#  define FMT_CPLUSPLUS __cplusplus
#endif

// Detect __has_*.
#ifdef __has_feature
#  define FMT_HAS_FEATURE(x) __has_feature(x)
#else
#  define FMT_HAS_FEATURE(x) 0
#endif
#ifdef __has_include
#  define FMT_HAS_INCLUDE(x) __has_include(x)
#else
#  define FMT_HAS_INCLUDE(x) 0
#endif
#ifdef __has_cpp_attribute
#  define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
#  define FMT_HAS_CPP_ATTRIBUTE(x) 0
#endif

#define FMT_HAS_CPP14_ATTRIBUTE(attribute) \
  (FMT_CPLUSPLUS >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute))

#define FMT_HAS_CPP17_ATTRIBUTE(attribute) \
  (FMT_CPLUSPLUS >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute))

// Detect C++14 relaxed constexpr.
#ifdef FMT_USE_CONSTEXPR
// Use the provided definition.
#elif FMT_GCC_VERSION >= 600 && FMT_CPLUSPLUS >= 201402L
// GCC only allows throw in constexpr since version 6:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67371.
#  define FMT_USE_CONSTEXPR 1
#elif FMT_ICC_VERSION
#  define FMT_USE_CONSTEXPR 0  // https://github.com/fmtlib/fmt/issues/1628
#elif FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VERSION >= 1912
#  define FMT_USE_CONSTEXPR 1
#else
#  define FMT_USE_CONSTEXPR 0
#endif
#if FMT_USE_CONSTEXPR
#  define FMT_CONSTEXPR constexpr
#else
#  define FMT_CONSTEXPR
#endif

// Detect consteval, C++20 constexpr extensions and std::is_constant_evaluated.
#if !defined(__cpp_lib_is_constant_evaluated)
#  define FMT_USE_CONSTEVAL 0
#elif FMT_CPLUSPLUS < 201709L
#  define FMT_USE_CONSTEVAL 0
#elif FMT_GLIBCXX_RELEASE && FMT_GLIBCXX_RELEASE < 10
#  define FMT_USE_CONSTEVAL 0
#elif FMT_LIBCPP_VERSION && FMT_LIBCPP_VERSION < 10000
#  define FMT_USE_CONSTEVAL 0
#elif defined(__apple_build_version__) && __apple_build_version__ < 14000029L
#  define FMT_USE_CONSTEVAL 0  // consteval is broken in Apple clang < 14.
#elif FMT_MSC_VERSION && FMT_MSC_VERSION < 1929
#  define FMT_USE_CONSTEVAL 0  // consteval is broken in MSVC VS2019 < 16.10.
#elif defined(__cpp_consteval)
#  define FMT_USE_CONSTEVAL 1
#elif FMT_GCC_VERSION >= 1002 || FMT_CLANG_VERSION >= 1101
#  define FMT_USE_CONSTEVAL 1
#else
#  define FMT_USE_CONSTEVAL 0
#endif
#if FMT_USE_CONSTEVAL
#  define FMT_CONSTEVAL consteval
#  define FMT_CONSTEXPR20 constexpr
#else
#  define FMT_CONSTEVAL
#  define FMT_CONSTEXPR20
#endif

#if defined(FMT_USE_NONTYPE_TEMPLATE_ARGS)
// Use the provided definition.
#elif defined(__NVCOMPILER)
#  define FMT_USE_NONTYPE_TEMPLATE_ARGS 0
#elif FMT_GCC_VERSION >= 903 && FMT_CPLUSPLUS >= 201709L
#  define FMT_USE_NONTYPE_TEMPLATE_ARGS 1
#elif defined(__cpp_nontype_template_args) && \
    __cpp_nontype_template_args >= 201911L
#  define FMT_USE_NONTYPE_TEMPLATE_ARGS 1
#elif FMT_CLANG_VERSION >= 1200 && FMT_CPLUSPLUS >= 202002L
#  define FMT_USE_NONTYPE_TEMPLATE_ARGS 1
#else
#  define FMT_USE_NONTYPE_TEMPLATE_ARGS 0
#endif

#ifdef FMT_USE_CONCEPTS
// Use the provided definition.
#elif defined(__cpp_concepts)
#  define FMT_USE_CONCEPTS 1
#else
#  define FMT_USE_CONCEPTS 0
#endif

// Check if exceptions are disabled.
#ifdef FMT_EXCEPTIONS
// Use the provided definition.
#elif defined(__GNUC__) && !defined(__EXCEPTIONS)
#  define FMT_EXCEPTIONS 0
#elif FMT_MSC_VERSION && !_HAS_EXCEPTIONS
#  define FMT_EXCEPTIONS 0
#else
#  define FMT_EXCEPTIONS 1
#endif
#if FMT_EXCEPTIONS
#  define FMT_TRY try
#  define FMT_CATCH(x) catch (x)
#else
#  define FMT_TRY if (true)
#  define FMT_CATCH(x) if (false)
#endif

#if FMT_HAS_CPP17_ATTRIBUTE(fallthrough)
#  define FMT_FALLTHROUGH [[fallthrough]]
#elif defined(__clang__)
#  define FMT_FALLTHROUGH [[clang::fallthrough]]
#elif FMT_GCC_VERSION >= 700 && \
    (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520)
#  define FMT_FALLTHROUGH [[gnu::fallthrough]]
#else
#  define FMT_FALLTHROUGH
#endif

// Disable [[noreturn]] on MSVC/NVCC because of bogus unreachable code warnings.
#if FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VERSION && !defined(__NVCC__)
#  define FMT_NORETURN [[noreturn]]
#else
#  define FMT_NORETURN
#endif

#ifndef FMT_NODISCARD
#  if FMT_HAS_CPP17_ATTRIBUTE(nodiscard)
#    define FMT_NODISCARD [[nodiscard]]
#  else
#    define FMT_NODISCARD
#  endif
#endif

#ifdef FMT_DEPRECATED
// Use the provided definition.
#elif FMT_HAS_CPP14_ATTRIBUTE(deprecated)
#  define FMT_DEPRECATED [[deprecated]]
#else
#  define FMT_DEPRECATED /* deprecated */
#endif

#ifdef FMT_INLINE
// Use the provided definition.
#elif FMT_GCC_VERSION || FMT_CLANG_VERSION
#  define FMT_ALWAYS_INLINE inline __attribute__((always_inline))
#else
#  define FMT_ALWAYS_INLINE inline
#endif
// A version of FMT_INLINE to prevent code bloat in debug mode.
#ifdef NDEBUG
#  define FMT_INLINE FMT_ALWAYS_INLINE
#else
#  define FMT_INLINE inline
#endif

#if FMT_GCC_VERSION || FMT_CLANG_VERSION
#  define FMT_VISIBILITY(value) __attribute__((visibility(value)))
#else
#  define FMT_VISIBILITY(value)
#endif

#ifndef FMT_GCC_PRAGMA
// Workaround a _Pragma bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=59884
// and an nvhpc warning: https://github.com/fmtlib/fmt/pull/2582.
#  if FMT_GCC_VERSION >= 504 && !defined(__NVCOMPILER)
#    define FMT_GCC_PRAGMA(arg) _Pragma(arg)
#  else
#    define FMT_GCC_PRAGMA(arg)
#  endif
#endif

// GCC < 5 requires this-> in decltype.
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 500
#  define FMT_DECLTYPE_THIS this->
#else
#  define FMT_DECLTYPE_THIS
#endif

#if FMT_MSC_VERSION
#  define FMT_MSC_WARNING(...) __pragma(warning(__VA_ARGS__))
#  define FMT_UNCHECKED_ITERATOR(It) \
    using _Unchecked_type = It  // Mark iterator as checked.
#else
#  define FMT_MSC_WARNING(...)
#  define FMT_UNCHECKED_ITERATOR(It) using unchecked_type = It
#endif

#ifndef FMT_BEGIN_NAMESPACE
#  define FMT_BEGIN_NAMESPACE \
    namespace fmt {           \
    inline namespace v11 {
#  define FMT_END_NAMESPACE \
    }                       \
    }
#endif

#ifndef FMT_EXPORT
#  define FMT_EXPORT
#  define FMT_BEGIN_EXPORT
#  define FMT_END_EXPORT
#endif

#if !defined(FMT_HEADER_ONLY) && defined(_WIN32)
#  if defined(FMT_LIB_EXPORT)
#    define FMT_API __declspec(dllexport)
#  elif defined(FMT_SHARED)
#    define FMT_API __declspec(dllimport)
#  endif
#elif defined(FMT_LIB_EXPORT) || defined(FMT_SHARED)
#  define FMT_API FMT_VISIBILITY("default")
#endif
#ifndef FMT_API
#  define FMT_API
#endif

#ifndef FMT_UNICODE
#  define FMT_UNICODE 0
#endif

// Check if rtti is available.
#ifndef FMT_USE_RTTI
// __RTTI is for EDG compilers. _CPPRTTI is for MSVC.
#  if defined(__GXX_RTTI) || FMT_HAS_FEATURE(cxx_rtti) || defined(_CPPRTTI) || \
      defined(__INTEL_RTTI__) || defined(__RTTI)
#    define FMT_USE_RTTI 1
#  else
#    define FMT_USE_RTTI 0
#  endif
#endif

#define FMT_FWD(...) static_cast<decltype(__VA_ARGS__)&&>(__VA_ARGS__)

// Enable minimal optimizations for more compact code in debug mode.
FMT_GCC_PRAGMA("GCC push_options")
#if !defined(__OPTIMIZE__) && !defined(__CUDACC__)
FMT_GCC_PRAGMA("GCC optimize(\"Og\")")
#endif

FMT_BEGIN_NAMESPACE

// Implementations of enable_if_t and other metafunctions for older systems.
template <bool B, typename T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
template <bool B, typename T, typename F>
using conditional_t = typename std::conditional<B, T, F>::type;
template <bool B> using bool_constant = std::integral_constant<bool, B>;
template <typename T>
using remove_reference_t = typename std::remove_reference<T>::type;
template <typename T>
using remove_const_t = typename std::remove_const<T>::type;
template <typename T>
using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type;
template <typename T> struct type_identity {
  using type = T;
};
template <typename T> using type_identity_t = typename type_identity<T>::type;
template <typename T>
using make_unsigned_t = typename std::make_unsigned<T>::type;
template <typename T>
using underlying_t = typename std::underlying_type<T>::type;

#if FMT_GCC_VERSION && FMT_GCC_VERSION < 500
// A workaround for gcc 4.8 to make void_t work in a SFINAE context.
template <typename...> struct void_t_impl {
  using type = void;
};
template <typename... T> using void_t = typename void_t_impl<T...>::type;
#else
template <typename...> using void_t = void;
#endif

struct monostate {
  constexpr monostate() {}
};

// An enable_if helper to be used in template parameters which results in much
// shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed
// to workaround a bug in MSVC 2019 (see #1140 and #1186).
#ifdef FMT_DOC
#  define FMT_ENABLE_IF(...)
#else
#  define FMT_ENABLE_IF(...) fmt::enable_if_t<(__VA_ARGS__), int> = 0
#endif

// This is defined in base.h instead of format.h to avoid injecting in std.
// It is a template to avoid undesirable implicit conversions to std::byte.
#ifdef __cpp_lib_byte
template <typename T, FMT_ENABLE_IF(std::is_same<T, std::byte>::value)>
inline auto format_as(T b) -> unsigned char {
  return static_cast<unsigned char>(b);
}
#endif

namespace detail {
// Suppresses "unused variable" warnings with the method described in
// https://herbsutter.com/2009/10/18/mailbag-shutting-up-compiler-warnings/.
// (void)var does not work on many Intel compilers.
template <typename... T> FMT_CONSTEXPR void ignore_unused(const T&...) {}

constexpr auto is_constant_evaluated(bool default_value = false) noexcept
    -> bool {
// Workaround for incompatibility between libstdc++ consteval-based
// std::is_constant_evaluated() implementation and clang-14:
// https://github.com/fmtlib/fmt/issues/3247.
#if FMT_CPLUSPLUS >= 202002L && FMT_GLIBCXX_RELEASE >= 12 && \
    (FMT_CLANG_VERSION >= 1400 && FMT_CLANG_VERSION < 1500)
  ignore_unused(default_value);
  return __builtin_is_constant_evaluated();
#elif defined(__cpp_lib_is_constant_evaluated)
  ignore_unused(default_value);
  return std::is_constant_evaluated();
#else
  return default_value;
#endif
}

// Suppresses "conditional expression is constant" warnings.
template <typename T> constexpr auto const_check(T value) -> T { return value; }

FMT_NORETURN FMT_API void assert_fail(const char* file, int line,
                                      const char* message);

#if defined(FMT_ASSERT)
// Use the provided definition.
#elif defined(NDEBUG)
// FMT_ASSERT is not empty to avoid -Wempty-body.
#  define FMT_ASSERT(condition, message) \
    fmt::detail::ignore_unused((condition), (message))
#else
#  define FMT_ASSERT(condition, message)                                    \
    ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \
         ? (void)0                                                          \
         : fmt::detail::assert_fail(__FILE__, __LINE__, (message)))
#endif

#ifdef FMT_USE_INT128
// Do nothing.
#elif defined(__SIZEOF_INT128__) && !defined(__NVCC__) && \
    !(FMT_CLANG_VERSION && FMT_MSC_VERSION)
#  define FMT_USE_INT128 1
using int128_opt = __int128_t;  // An optional native 128-bit integer.
using uint128_opt = __uint128_t;
template <typename T> inline auto convert_for_visit(T value) -> T {
  return value;
}
#else
#  define FMT_USE_INT128 0
#endif
#if !FMT_USE_INT128
enum class int128_opt {};
enum class uint128_opt {};
// Reduce template instantiations.
template <typename T> auto convert_for_visit(T) -> monostate { return {}; }
#endif

// Casts a nonnegative integer to unsigned.
template <typename Int>
FMT_CONSTEXPR auto to_unsigned(Int value) -> make_unsigned_t<Int> {
  FMT_ASSERT(std::is_unsigned<Int>::value || value >= 0, "negative value");
  return static_cast<make_unsigned_t<Int>>(value);
}

// A heuristic to detect std::string and std::[experimental::]string_view.
// It is mainly used to avoid dependency on <[experimental/]string_view>.
template <typename T, typename Enable = void>
struct is_std_string_like : std::false_type {};
template <typename T>
struct is_std_string_like<T, void_t<decltype(std::declval<T>().find_first_of(
                                 typename T::value_type(), 0))>>
    : std::is_convertible<decltype(std::declval<T>().data()),
                          const typename T::value_type*> {};

// Returns true iff the literal encoding is UTF-8.
constexpr auto is_utf8_enabled() -> bool {
  // Avoid an MSVC sign extension bug: https://github.com/fmtlib/fmt/pull/2297.
  using uchar = unsigned char;
  return sizeof("\u00A7") == 3 && uchar("\u00A7"[0]) == 0xC2 &&
         uchar("\u00A7"[1]) == 0xA7;
}
constexpr auto use_utf8() -> bool {
  return !FMT_MSC_VERSION || is_utf8_enabled();
}

static_assert(!FMT_UNICODE || use_utf8(),
              "Unicode support requires compiling with /utf-8");

template <typename Char> FMT_CONSTEXPR auto length(const Char* s) -> size_t {
  size_t len = 0;
  while (*s++) ++len;
  return len;
}

template <typename Char>
FMT_CONSTEXPR auto compare(const Char* s1, const Char* s2, std::size_t n)
    -> int {
  if (!is_constant_evaluated() && sizeof(Char) == 1) return memcmp(s1, s2, n);
  for (; n != 0; ++s1, ++s2, --n) {
    if (*s1 < *s2) return -1;
    if (*s1 > *s2) return 1;
  }
  return 0;
}

namespace adl {
using namespace std;

template <typename Container>
auto invoke_back_inserter()
    -> decltype(back_inserter(std::declval<Container&>()));
}  // namespace adl

template <typename It, typename Enable = std::true_type>
struct is_back_insert_iterator : std::false_type {};

template <typename It>
struct is_back_insert_iterator<
    It, bool_constant<std::is_same<
            decltype(adl::invoke_back_inserter<typename It::container_type>()),
            It>::value>> : std::true_type {};

// Extracts a reference to the container from *insert_iterator.
template <typename OutputIt>
inline auto get_container(OutputIt it) -> typename OutputIt::container_type& {
  struct accessor : OutputIt {
    accessor(OutputIt base) : OutputIt(base) {}
    using OutputIt::container;
  };
  return *accessor(it).container;
}
}  // namespace detail

// Checks whether T is a container with contiguous storage.
template <typename T> struct is_contiguous : std::false_type {};

/**
 * An implementation of `std::basic_string_view` for pre-C++17. It provides a
 * subset of the API. `fmt::basic_string_view` is used for format strings even
 * if `std::basic_string_view` is available to prevent issues when a library is
 * compiled with a different `-std` option than the client code (which is not
 * recommended).
 */
FMT_EXPORT
template <typename Char> class basic_string_view {
 private:
  const Char* data_;
  size_t size_;

 public:
  using value_type = Char;
  using iterator = const Char*;

  constexpr basic_string_view() noexcept : data_(nullptr), size_(0) {}

  /// Constructs a string reference object from a C string and a size.
  constexpr basic_string_view(const Char* s, size_t count) noexcept
      : data_(s), size_(count) {}

  constexpr basic_string_view(std::nullptr_t) = delete;

  /// Constructs a string reference object from a C string.
  FMT_CONSTEXPR20
  basic_string_view(const Char* s)
      : data_(s),
        size_(detail::const_check(std::is_same<Char, char>::value &&
                                  !detail::is_constant_evaluated(false))
                  ? strlen(reinterpret_cast<const char*>(s))
                  : detail::length(s)) {}

  /// Constructs a string reference from a `std::basic_string` or a
  /// `std::basic_string_view` object.
  template <typename S,
            FMT_ENABLE_IF(detail::is_std_string_like<S>::value&& std::is_same<
                          typename S::value_type, Char>::value)>
  FMT_CONSTEXPR basic_string_view(const S& s) noexcept
      : data_(s.data()), size_(s.size()) {}

  /// Returns a pointer to the string data.
  constexpr auto data() const noexcept -> const Char* { return data_; }

  /// Returns the string size.
  constexpr auto size() const noexcept -> size_t { return size_; }

  constexpr auto begin() const noexcept -> iterator { return data_; }
  constexpr auto end() const noexcept -> iterator { return data_ + size_; }

  constexpr auto operator[](size_t pos) const noexcept -> const Char& {
    return data_[pos];
  }

  FMT_CONSTEXPR void remove_prefix(size_t n) noexcept {
    data_ += n;
    size_ -= n;
  }

  FMT_CONSTEXPR auto starts_with(basic_string_view<Char> sv) const noexcept
      -> bool {
    return size_ >= sv.size_ && detail::compare(data_, sv.data_, sv.size_) == 0;
  }
  FMT_CONSTEXPR auto starts_with(Char c) const noexcept -> bool {
    return size_ >= 1 && *data_ == c;
  }
  FMT_CONSTEXPR auto starts_with(const Char* s) const -> bool {
    return starts_with(basic_string_view<Char>(s));
  }

  // Lexicographically compare this string reference to other.
  FMT_CONSTEXPR auto compare(basic_string_view other) const -> int {
    size_t str_size = size_ < other.size_ ? size_ : other.size_;
    int result = detail::compare(data_, other.data_, str_size);
    if (result == 0)
      result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1);
    return result;
  }

  FMT_CONSTEXPR friend auto operator==(basic_string_view lhs,
                                       basic_string_view rhs) -> bool {
    return lhs.compare(rhs) == 0;
  }
  friend auto operator!=(basic_string_view lhs, basic_string_view rhs) -> bool {
    return lhs.compare(rhs) != 0;
  }
  friend auto operator<(basic_string_view lhs, basic_string_view rhs) -> bool {
    return lhs.compare(rhs) < 0;
  }
  friend auto operator<=(basic_string_view lhs, basic_string_view rhs) -> bool {
    return lhs.compare(rhs) <= 0;
  }
  friend auto operator>(basic_string_view lhs, basic_string_view rhs) -> bool {
    return lhs.compare(rhs) > 0;
  }
  friend auto operator>=(basic_string_view lhs, basic_string_view rhs) -> bool {
    return lhs.compare(rhs) >= 0;
  }
};

FMT_EXPORT
using string_view = basic_string_view<char>;

/// Specifies if `T` is a character type. Can be specialized by users.
FMT_EXPORT
template <typename T> struct is_char : std::false_type {};
template <> struct is_char<char> : std::true_type {};

namespace detail {

// Constructs fmt::basic_string_view<Char> from types implicitly convertible
// to it, deducing Char. Explicitly convertible types such as the ones returned
// from FMT_STRING are intentionally excluded.
template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)>
constexpr auto to_string_view(const Char* s) -> basic_string_view<Char> {
  return s;
}
template <typename T, FMT_ENABLE_IF(is_std_string_like<T>::value)>
constexpr auto to_string_view(const T& s)
    -> basic_string_view<typename T::value_type> {
  return s;
}
template <typename Char>
constexpr auto to_string_view(basic_string_view<Char> s)
    -> basic_string_view<Char> {
  return s;
}

template <typename T, typename Enable = void>
struct has_to_string_view : std::false_type {};
// detail:: is intentional since to_string_view is not an extension point.
template <typename T>
struct has_to_string_view<
    T, void_t<decltype(detail::to_string_view(std::declval<T>()))>>
    : std::true_type {};

template <typename Char, Char... C> struct string_literal {
  static constexpr Char value[sizeof...(C)] = {C...};
  constexpr operator basic_string_view<Char>() const {
    return {value, sizeof...(C)};
  }
};
#if FMT_CPLUSPLUS < 201703L
template <typename Char, Char... C>
constexpr Char string_literal<Char, C...>::value[sizeof...(C)];
#endif

enum class type {
  none_type,
  // Integer types should go first,
  int_type,
  uint_type,
  long_long_type,
  ulong_long_type,
  int128_type,
  uint128_type,
  bool_type,
  char_type,
  last_integer_type = char_type,
  // followed by floating-point types.
  float_type,
  double_type,
  long_double_type,
  last_numeric_type = long_double_type,
  cstring_type,
  string_type,
  pointer_type,
  custom_type
};

// Maps core type T to the corresponding type enum constant.
template <typename T, typename Char>
struct type_constant : std::integral_constant<type, type::custom_type> {};

#define FMT_TYPE_CONSTANT(Type, constant) \
  template <typename Char>                \
  struct type_constant<Type, Char>        \
      : std::integral_constant<type, type::constant> {}

FMT_TYPE_CONSTANT(int, int_type);
FMT_TYPE_CONSTANT(unsigned, uint_type);
FMT_TYPE_CONSTANT(long long, long_long_type);
FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type);
FMT_TYPE_CONSTANT(int128_opt, int128_type);
FMT_TYPE_CONSTANT(uint128_opt, uint128_type);
FMT_TYPE_CONSTANT(bool, bool_type);
FMT_TYPE_CONSTANT(Char, char_type);
FMT_TYPE_CONSTANT(float, float_type);
FMT_TYPE_CONSTANT(double, double_type);
FMT_TYPE_CONSTANT(long double, long_double_type);
FMT_TYPE_CONSTANT(const Char*, cstring_type);
FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type);
FMT_TYPE_CONSTANT(const void*, pointer_type);

constexpr auto is_integral_type(type t) -> bool {
  return t > type::none_type && t <= type::last_integer_type;
}
constexpr auto is_arithmetic_type(type t) -> bool {
  return t > type::none_type && t <= type::last_numeric_type;
}

constexpr auto set(type rhs) -> int { return 1 << static_cast<int>(rhs); }
constexpr auto in(type t, int set) -> bool {
  return ((set >> static_cast<int>(t)) & 1) != 0;
}

// Bitsets of types.
enum {
  sint_set =
      set(type::int_type) | set(type::long_long_type) | set(type::int128_type),
  uint_set = set(type::uint_type) | set(type::ulong_long_type) |
             set(type::uint128_type),
  bool_set = set(type::bool_type),
  char_set = set(type::char_type),
  float_set = set(type::float_type) | set(type::double_type) |
              set(type::long_double_type),
  string_set = set(type::string_type),
  cstring_set = set(type::cstring_type),
  pointer_set = set(type::pointer_type)
};
}  // namespace detail

/// Reports a format error at compile time or, via a `format_error` exception,
/// at runtime.
// This function is intentionally not constexpr to give a compile-time error.
FMT_NORETURN FMT_API void report_error(const char* message);

FMT_DEPRECATED FMT_NORETURN inline void throw_format_error(
    const char* message) {
  report_error(message);
}

/// String's character (code unit) type.
template <typename S,
          typename V = decltype(detail::to_string_view(std::declval<S>()))>
using char_t = typename V::value_type;

/**
 * Parsing context consisting of a format string range being parsed and an
 * argument counter for automatic indexing.
 * You can use the `format_parse_context` type alias for `char` instead.
 */
FMT_EXPORT
template <typename Char> class basic_format_parse_context {
 private:
  basic_string_view<Char> format_str_;
  int next_arg_id_;

  FMT_CONSTEXPR void do_check_arg_id(int id);

 public:
  using char_type = Char;
  using iterator = const Char*;

  explicit constexpr basic_format_parse_context(
      basic_string_view<Char> format_str, int next_arg_id = 0)
      : format_str_(format_str), next_arg_id_(next_arg_id) {}

  /// Returns an iterator to the beginning of the format string range being
  /// parsed.
  constexpr auto begin() const noexcept -> iterator {
    return format_str_.begin();
  }

  /// Returns an iterator past the end of the format string range being parsed.
  constexpr auto end() const noexcept -> iterator { return format_str_.end(); }

  /// Advances the begin iterator to `it`.
  FMT_CONSTEXPR void advance_to(iterator it) {
    format_str_.remove_prefix(detail::to_unsigned(it - begin()));
  }

  /// Reports an error if using the manual argument indexing; otherwise returns
  /// the next argument index and switches to the automatic indexing.
  FMT_CONSTEXPR auto next_arg_id() -> int {
    if (next_arg_id_ < 0) {
      report_error("cannot switch from manual to automatic argument indexing");
      return 0;
    }
    int id = next_arg_id_++;
    do_check_arg_id(id);
    return id;
  }

  /// Reports an error if using the automatic argument indexing; otherwise
  /// switches to the manual indexing.
  FMT_CONSTEXPR void check_arg_id(int id) {
    if (next_arg_id_ > 0) {
      report_error("cannot switch from automatic to manual argument indexing");
      return;
    }
    next_arg_id_ = -1;
    do_check_arg_id(id);
  }
  FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {
    next_arg_id_ = -1;
  }
  FMT_CONSTEXPR void check_dynamic_spec(int arg_id);
};

FMT_EXPORT
using format_parse_context = basic_format_parse_context<char>;

namespace detail {
// A parse context with extra data used only in compile-time checks.
template <typename Char>
class compile_parse_context : public basic_format_parse_context<Char> {
 private:
  int num_args_;
  const type* types_;
  using base = basic_format_parse_context<Char>;

 public:
  explicit FMT_CONSTEXPR compile_parse_context(
      basic_string_view<Char> format_str, int num_args, const type* types,
      int next_arg_id = 0)
      : base(format_str, next_arg_id), num_args_(num_args), types_(types) {}

  constexpr auto num_args() const -> int { return num_args_; }
  constexpr auto arg_type(int id) const -> type { return types_[id]; }

  FMT_CONSTEXPR auto next_arg_id() -> int {
    int id = base::next_arg_id();
    if (id >= num_args_) report_error("argument not found");
    return id;
  }

  FMT_CONSTEXPR void check_arg_id(int id) {
    base::check_arg_id(id);
    if (id >= num_args_) report_error("argument not found");
  }
  using base::check_arg_id;

  FMT_CONSTEXPR void check_dynamic_spec(int arg_id) {
    detail::ignore_unused(arg_id);
    if (arg_id < num_args_ && types_ && !is_integral_type(types_[arg_id]))
      report_error("width/precision is not integer");
  }
};

/// A contiguous memory buffer with an optional growing ability. It is an
/// internal class and shouldn't be used directly, only via `memory_buffer`.
template <typename T> class buffer {
 private:
  T* ptr_;
  size_t size_;
  size_t capacity_;

  using grow_fun = void (*)(buffer& buf, size_t capacity);
  grow_fun grow_;

 protected:
  // Don't initialize ptr_ since it is not accessed to save a few cycles.
  FMT_MSC_WARNING(suppress : 26495)
  FMT_CONSTEXPR20 buffer(grow_fun grow, size_t sz) noexcept
      : size_(sz), capacity_(sz), grow_(grow) {}

  constexpr buffer(grow_fun grow, T* p = nullptr, size_t sz = 0,
                   size_t cap = 0) noexcept
      : ptr_(p), size_(sz), capacity_(cap), grow_(grow) {}

  FMT_CONSTEXPR20 ~buffer() = default;
  buffer(buffer&&) = default;

  /// Sets the buffer data and capacity.
  FMT_CONSTEXPR void set(T* buf_data, size_t buf_capacity) noexcept {
    ptr_ = buf_data;
    capacity_ = buf_capacity;
  }

 public:
  using value_type = T;
  using const_reference = const T&;

  buffer(const buffer&) = delete;
  void operator=(const buffer&) = delete;

  auto begin() noexcept -> T* { return ptr_; }
  auto end() noexcept -> T* { return ptr_ + size_; }

  auto begin() const noexcept -> const T* { return ptr_; }
  auto end() const noexcept -> const T* { return ptr_ + size_; }

  /// Returns the size of this buffer.
  constexpr auto size() const noexcept -> size_t { return size_; }

  /// Returns the capacity of this buffer.
  constexpr auto capacity() const noexcept -> size_t { return capacity_; }

  /// Returns a pointer to the buffer data (not null-terminated).
  FMT_CONSTEXPR auto data() noexcept -> T* { return ptr_; }
  FMT_CONSTEXPR auto data() const noexcept -> const T* { return ptr_; }

  /// Clears this buffer.
  void clear() { size_ = 0; }

  // Tries resizing the buffer to contain `count` elements. If T is a POD type
  // the new elements may not be initialized.
  FMT_CONSTEXPR void try_resize(size_t count) {
    try_reserve(count);
    size_ = count <= capacity_ ? count : capacity_;
  }

  // Tries increasing the buffer capacity to `new_capacity`. It can increase the
  // capacity by a smaller amount than requested but guarantees there is space
  // for at least one additional element either by increasing the capacity or by
  // flushing the buffer if it is full.
  FMT_CONSTEXPR void try_reserve(size_t new_capacity) {
    if (new_capacity > capacity_) grow_(*this, new_capacity);
  }

  FMT_CONSTEXPR void push_back(const T& value) {
    try_reserve(size_ + 1);
    ptr_[size_++] = value;
  }

  /// Appends data to the end of the buffer.
  template <typename U> void append(const U* begin, const U* end) {
    while (begin != end) {
      auto count = to_unsigned(end - begin);
      try_reserve(size_ + count);
      auto free_cap = capacity_ - size_;
      if (free_cap < count) count = free_cap;
      // A loop is faster than memcpy on small sizes.
      T* out = ptr_ + size_;
      for (size_t i = 0; i < count; ++i) out[i] = begin[i];
      size_ += count;
      begin += count;
    }
  }

  template <typename Idx> FMT_CONSTEXPR auto operator[](Idx index) -> T& {
    return ptr_[index];
  }
  template <typename Idx>
  FMT_CONSTEXPR auto operator[](Idx index) const -> const T& {
    return ptr_[index];
  }
};

struct buffer_traits {
  explicit buffer_traits(size_t) {}
  auto count() const -> size_t { return 0; }
  auto limit(size_t size) -> size_t { return size; }
};

class fixed_buffer_traits {
 private:
  size_t count_ = 0;
  size_t limit_;

 public:
  explicit fixed_buffer_traits(size_t limit) : limit_(limit) {}
  auto count() const -> size_t { return count_; }
  auto limit(size_t size) -> size_t {
    size_t n = limit_ > count_ ? limit_ - count_ : 0;
    count_ += size;
    return size < n ? size : n;
  }
};

// A buffer that writes to an output iterator when flushed.
template <typename OutputIt, typename T, typename Traits = buffer_traits>
class iterator_buffer : public Traits, public buffer<T> {
 private:
  OutputIt out_;
  enum { buffer_size = 256 };
  T data_[buffer_size];

  static FMT_CONSTEXPR void grow(buffer<T>& buf, size_t) {
    if (buf.size() == buffer_size) static_cast<iterator_buffer&>(buf).flush();
  }

  void flush() {
    auto size = this->size();
    this->clear();
    const T* begin = data_;
    const T* end = begin + this->limit(size);
    while (begin != end) *out_++ = *begin++;
  }

 public:
  explicit iterator_buffer(OutputIt out, size_t n = buffer_size)
      : Traits(n), buffer<T>(grow, data_, 0, buffer_size), out_(out) {}
  iterator_buffer(iterator_buffer&& other) noexcept
      : Traits(other),
        buffer<T>(grow, data_, 0, buffer_size),
        out_(other.out_) {}
  ~iterator_buffer() {
    // Don't crash if flush fails during unwinding.
    FMT_TRY { flush(); }
    FMT_CATCH(...) {}
  }

  auto out() -> OutputIt {
    flush();
    return out_;
  }
  auto count() const -> size_t { return Traits::count() + this->size(); }
};

template <typename T>
class iterator_buffer<T*, T, fixed_buffer_traits> : public fixed_buffer_traits,
                                                    public buffer<T> {
 private:
  T* out_;
  enum { buffer_size = 256 };
  T data_[buffer_size];

  static FMT_CONSTEXPR void grow(buffer<T>& buf, size_t) {
    if (buf.size() == buf.capacity())
      static_cast<iterator_buffer&>(buf).flush();
  }

  void flush() {
    size_t n = this->limit(this->size());
    if (this->data() == out_) {
      out_ += n;
      this->set(data_, buffer_size);
    }
    this->clear();
  }

 public:
  explicit iterator_buffer(T* out, size_t n = buffer_size)
      : fixed_buffer_traits(n), buffer<T>(grow, out, 0, n), out_(out) {}
  iterator_buffer(iterator_buffer&& other) noexcept
      : fixed_buffer_traits(other),
        buffer<T>(static_cast<iterator_buffer&&>(other)),
        out_(other.out_) {
    if (this->data() != out_) {
      this->set(data_, buffer_size);
      this->clear();
    }
  }
  ~iterator_buffer() { flush(); }

  auto out() -> T* {
    flush();
    return out_;
  }
  auto count() const -> size_t {
    return fixed_buffer_traits::count() + this->size();
  }
};

template <typename T> class iterator_buffer<T*, T> : public buffer<T> {
 public:
  explicit iterator_buffer(T* out, size_t = 0)
      : buffer<T>([](buffer<T>&, size_t) {}, out, 0, ~size_t()) {}

  auto out() -> T* { return &*this->end(); }
};

// A buffer that writes to a container with the contiguous storage.
template <typename OutputIt>
class iterator_buffer<
    OutputIt,
    enable_if_t<detail::is_back_insert_iterator<OutputIt>::value &&
                    is_contiguous<typename OutputIt::container_type>::value,
                typename OutputIt::container_type::value_type>>
    : public buffer<typename OutputIt::container_type::value_type> {
 private:
  using container_type = typename OutputIt::container_type;
  using value_type = typename container_type::value_type;
  container_type& container_;

  static FMT_CONSTEXPR void grow(buffer<value_type>& buf, size_t capacity) {
    auto& self = static_cast<iterator_buffer&>(buf);
    self.container_.resize(capacity);
    self.set(&self.container_[0], capacity);
  }

 public:
  explicit iterator_buffer(container_type& c)
      : buffer<value_type>(grow, c.size()), container_(c) {}
  explicit iterator_buffer(OutputIt out, size_t = 0)
      : iterator_buffer(get_container(out)) {}

  auto out() -> OutputIt { return back_inserter(container_); }
};

// A buffer that counts the number of code units written discarding the output.
template <typename T = char> class counting_buffer : public buffer<T> {
 private:
  enum { buffer_size = 256 };
  T data_[buffer_size];
  size_t count_ = 0;

  static FMT_CONSTEXPR void grow(buffer<T>& buf, size_t) {
    if (buf.size() != buffer_size) return;
    static_cast<counting_buffer&>(buf).count_ += buf.size();
    buf.clear();
  }

 public:
  counting_buffer() : buffer<T>(grow, data_, 0, buffer_size) {}

  auto count() -> size_t { return count_ + this->size(); }
};
}  // namespace detail

template <typename Char>
FMT_CONSTEXPR void basic_format_parse_context<Char>::do_check_arg_id(int id) {
  // Argument id is only checked at compile-time during parsing because
  // formatting has its own validation.
  if (detail::is_constant_evaluated() &&
      (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) {
    using context = detail::compile_parse_context<Char>;
    if (id >= static_cast<context*>(this)->num_args())
      report_error("argument not found");
  }
}

template <typename Char>
FMT_CONSTEXPR void basic_format_parse_context<Char>::check_dynamic_spec(
    int arg_id) {
  if (detail::is_constant_evaluated() &&
      (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) {
    using context = detail::compile_parse_context<Char>;
    static_cast<context*>(this)->check_dynamic_spec(arg_id);
  }
}

FMT_EXPORT template <typename Context> class basic_format_arg;
FMT_EXPORT template <typename Context> class basic_format_args;
FMT_EXPORT template <typename Context> class dynamic_format_arg_store;

// A formatter for objects of type T.
FMT_EXPORT
template <typename T, typename Char = char, typename Enable = void>
struct formatter {
  // A deleted default constructor indicates a disabled formatter.
  formatter() = delete;
};

// Specifies if T has an enabled formatter specialization. A type can be
// formattable even if it doesn't have a formatter e.g. via a conversion.
template <typename T, typename Context>
using has_formatter =
    std::is_constructible<typename Context::template formatter_type<T>>;

// An output iterator that appends to a buffer. It is used instead of
// back_insert_iterator to reduce symbol sizes and avoid <iterator> dependency.
template <typename T> class basic_appender {
 private:
  detail::buffer<T>* buffer_;

  friend auto get_container(basic_appender app) -> detail::buffer<T>& {
    return *app.buffer_;
  }

 public:
  using iterator_category = int;
  using value_type = T;
  using difference_type = ptrdiff_t;
  using pointer = T*;
  using reference = T&;
  using container_type = detail::buffer<T>;
  FMT_UNCHECKED_ITERATOR(basic_appender);

  FMT_CONSTEXPR basic_appender(detail::buffer<T>& buf) : buffer_(&buf) {}

  auto operator=(T c) -> basic_appender& {
    buffer_->push_back(c);
    return *this;
  }
  auto operator*() -> basic_appender& { return *this; }
  auto operator++() -> basic_appender& { return *this; }
  auto operator++(int) -> basic_appender { return *this; }
};

using appender = basic_appender<char>;

namespace detail {
template <typename T>
struct is_back_insert_iterator<basic_appender<T>> : std::true_type {};

template <typename T, typename Enable = void>
struct locking : std::true_type {};
template <typename T>
struct locking<T, void_t<typename formatter<remove_cvref_t<T>>::nonlocking>>
    : std::false_type {};

template <typename T = int> FMT_CONSTEXPR inline auto is_locking() -> bool {
  return locking<T>::value;
}
template <typename T1, typename T2, typename... Tail>
FMT_CONSTEXPR inline auto is_locking() -> bool {
  return locking<T1>::value || is_locking<T2, Tail...>();
}

// An optimized version of std::copy with the output value type (T).
template <typename T, typename InputIt, typename OutputIt,
          FMT_ENABLE_IF(is_back_insert_iterator<OutputIt>::value)>
auto copy(InputIt begin, InputIt end, OutputIt out) -> OutputIt {
  get_container(out).append(begin, end);
  return out;
}

template <typename T, typename InputIt, typename OutputIt,
          FMT_ENABLE_IF(!is_back_insert_iterator<OutputIt>::value)>
FMT_CONSTEXPR auto copy(InputIt begin, InputIt end, OutputIt out) -> OutputIt {
  while (begin != end) *out++ = static_cast<T>(*begin++);
  return out;
}

template <typename T, typename V, typename OutputIt>
FMT_CONSTEXPR auto copy(basic_string_view<V> s, OutputIt out) -> OutputIt {
  return copy<T>(s.begin(), s.end(), out);
}

template <typename Context, typename T>
constexpr auto has_const_formatter_impl(T*)
    -> decltype(typename Context::template formatter_type<T>().format(
                    std::declval<const T&>(), std::declval<Context&>()),
                true) {
  return true;
}
template <typename Context>
constexpr auto has_const_formatter_impl(...) -> bool {
  return false;
}
template <typename T, typename Context>
constexpr auto has_const_formatter() -> bool {
  return has_const_formatter_impl<Context>(static_cast<T*>(nullptr));
}

template <typename It, typename Enable = std::true_type>
struct is_buffer_appender : std::false_type {};
template <typename It>
struct is_buffer_appender<
    It, bool_constant<
            is_back_insert_iterator<It>::value &&
            std::is_base_of<buffer<typename It::container_type::value_type>,
                            typename It::container_type>::value>>
    : std::true_type {};

// Maps an output iterator to a buffer.
template <typename T, typename OutputIt,
          FMT_ENABLE_IF(!is_buffer_appender<OutputIt>::value)>
auto get_buffer(OutputIt out) -> iterator_buffer<OutputIt, T> {
  return iterator_buffer<OutputIt, T>(out);
}
template <typename T, typename OutputIt,
          FMT_ENABLE_IF(is_buffer_appender<OutputIt>::value)>
auto get_buffer(OutputIt out) -> buffer<T>& {
  return get_container(out);
}

template <typename Buf, typename OutputIt>
auto get_iterator(Buf& buf, OutputIt) -> decltype(buf.out()) {
  return buf.out();
}
template <typename T, typename OutputIt>
auto get_iterator(buffer<T>&, OutputIt out) -> OutputIt {
  return out;
}

struct view {};

template <typename Char, typename T> struct named_arg : view {
  const Char* name;
  const T& value;
  named_arg(const Char* n, const T& v) : name(n), value(v) {}
};

template <typename Char> struct named_arg_info {
  const Char* name;
  int id;
};

template <typename T> struct is_named_arg : std::false_type {};
template <typename T> struct is_statically_named_arg : std::false_type {};

template <typename T, typename Char>
struct is_named_arg<named_arg<Char, T>> : std::true_type {};

template <bool B = false> constexpr auto count() -> size_t { return B ? 1 : 0; }
template <bool B1, bool B2, bool... Tail> constexpr auto count() -> size_t {
  return (B1 ? 1 : 0) + count<B2, Tail...>();
}

template <typename... Args> constexpr auto count_named_args() -> size_t {
  return count<is_named_arg<Args>::value...>();
}

template <typename... Args>
constexpr auto count_statically_named_args() -> size_t {
  return count<is_statically_named_arg<Args>::value...>();
}

struct unformattable {};
struct unformattable_char : unformattable {};
struct unformattable_pointer : unformattable {};

template <typename Char> struct string_value {
  const Char* data;
  size_t size;
};

template <typename Char> struct named_arg_value {
  const named_arg_info<Char>* data;
  size_t size;
};

template <typename Context> struct custom_value {
  using parse_context = typename Context::parse_context_type;
  void* value;
  void (*format)(void* arg, parse_context& parse_ctx, Context& ctx);
};

// A formatting argument value.
template <typename Context> class value {
 public:
  using char_type = typename Context::char_type;

  union {
    monostate no_value;
    int int_value;
    unsigned uint_value;
    long long long_long_value;
    unsigned long long ulong_long_value;
    int128_opt int128_value;
    uint128_opt uint128_value;
    bool bool_value;
    char_type char_value;
    float float_value;
    double double_value;
    long double long_double_value;
    const void* pointer;
    string_value<char_type> string;
    custom_value<Context> custom;
    named_arg_value<char_type> named_args;
  };

  constexpr FMT_ALWAYS_INLINE value() : no_value() {}
  constexpr FMT_ALWAYS_INLINE value(int val) : int_value(val) {}
  constexpr FMT_ALWAYS_INLINE value(unsigned val) : uint_value(val) {}
  constexpr FMT_ALWAYS_INLINE value(long long val) : long_long_value(val) {}
  constexpr FMT_ALWAYS_INLINE value(unsigned long long val)
      : ulong_long_value(val) {}
  FMT_ALWAYS_INLINE value(int128_opt val) : int128_value(val) {}
  FMT_ALWAYS_INLINE value(uint128_opt val) : uint128_value(val) {}
  constexpr FMT_ALWAYS_INLINE value(float val) : float_value(val) {}
  constexpr FMT_ALWAYS_INLINE value(double val) : double_value(val) {}
  FMT_ALWAYS_INLINE value(long double val) : long_double_value(val) {}
  constexpr FMT_ALWAYS_INLINE value(bool val) : bool_value(val) {}
  constexpr FMT_ALWAYS_INLINE value(char_type val) : char_value(val) {}
  FMT_CONSTEXPR FMT_ALWAYS_INLINE value(const char_type* val) {
    string.data = val;
    if (is_constant_evaluated()) string.size = {};
  }
  FMT_CONSTEXPR FMT_ALWAYS_INLINE value(basic_string_view<char_type> val) {
    string.data = val.data();
    string.size = val.size();
  }
  FMT_ALWAYS_INLINE value(const void* val) : pointer(val) {}
  FMT_ALWAYS_INLINE value(const named_arg_info<char_type>* args, size_t size)
      : named_args{args, size} {}

  template <typename T> FMT_CONSTEXPR20 FMT_ALWAYS_INLINE value(T& val) {
    using value_type = remove_const_t<T>;
    // T may overload operator& e.g. std::vector<bool>::reference in libc++.
#if defined(__cpp_if_constexpr)
    if constexpr (std::is_same<decltype(&val), T*>::value)
      custom.value = const_cast<value_type*>(&val);
#endif
    if (!is_constant_evaluated())
      custom.value = const_cast<char*>(&reinterpret_cast<const char&>(val));
    // Get the formatter type through the context to allow different contexts
    // have different extension points, e.g. `formatter<T>` for `format` and
    // `printf_formatter<T>` for `printf`.
    custom.format = format_custom_arg<
        value_type, typename Context::template formatter_type<value_type>>;
  }
  value(unformattable);
  value(unformattable_char);
  value(unformattable_pointer);

 private:
  // Formats an argument of a custom type, such as a user-defined class.
  template <typename T, typename Formatter>
  static void format_custom_arg(void* arg,
                                typename Context::parse_context_type& parse_ctx,
                                Context& ctx) {
    auto f = Formatter();
    parse_ctx.advance_to(f.parse(parse_ctx));
    using qualified_type =
        conditional_t<has_const_formatter<T, Context>(), const T, T>;
    // format must be const for compatibility with std::format and compilation.
    const auto& cf = f;
    ctx.advance_to(cf.format(*static_cast<qualified_type*>(arg), ctx));
  }
};

// To minimize the number of types we need to deal with, long is translated
// either to int or to long long depending on its size.
enum { long_short = sizeof(long) == sizeof(int) };
using long_type = conditional_t<long_short, int, long long>;
using ulong_type = conditional_t<long_short, unsigned, unsigned long long>;

template <typename T> struct format_as_result {
  template <typename U,
            FMT_ENABLE_IF(std::is_enum<U>::value || std::is_class<U>::value)>
  static auto map(U*) -> remove_cvref_t<decltype(format_as(std::declval<U>()))>;
  static auto map(...) -> void;

  using type = decltype(map(static_cast<T*>(nullptr)));
};
template <typename T> using format_as_t = typename format_as_result<T>::type;

template <typename T>
struct has_format_as
    : bool_constant<!std::is_same<format_as_t<T>, void>::value> {};

#define FMT_MAP_API FMT_CONSTEXPR FMT_ALWAYS_INLINE

// Maps formatting arguments to core types.
// arg_mapper reports errors by returning unformattable instead of using
// static_assert because it's used in the is_formattable trait.
template <typename Context> struct arg_mapper {
  using char_type = typename Context::char_type;

  FMT_MAP_API auto map(signed char val) -> int { return val; }
  FMT_MAP_API auto map(unsigned char val) -> unsigned { return val; }
  FMT_MAP_API auto map(short val) -> int { return val; }
  FMT_MAP_API auto map(unsigned short val) -> unsigned { return val; }
  FMT_MAP_API auto map(int val) -> int { return val; }
  FMT_MAP_API auto map(unsigned val) -> unsigned { return val; }
  FMT_MAP_API auto map(long val) -> long_type { return val; }
  FMT_MAP_API auto map(unsigned long val) -> ulong_type { return val; }
  FMT_MAP_API auto map(long long val) -> long long { return val; }
  FMT_MAP_API auto map(unsigned long long val) -> unsigned long long {
    return val;
  }
  FMT_MAP_API auto map(int128_opt val) -> int128_opt { return val; }
  FMT_MAP_API auto map(uint128_opt val) -> uint128_opt { return val; }
  FMT_MAP_API auto map(bool val) -> bool { return val; }

  template <typename T, FMT_ENABLE_IF(std::is_same<T, char>::value ||
                                      std::is_same<T, char_type>::value)>
  FMT_MAP_API auto map(T val) -> char_type {
    return val;
  }
  template <typename T, enable_if_t<(std::is_same<T, wchar_t>::value ||
#ifdef __cpp_char8_t
                                     std::is_same<T, char8_t>::value ||
#endif
                                     std::is_same<T, char16_t>::value ||
                                     std::is_same<T, char32_t>::value) &&
                                        !std::is_same<T, char_type>::value,
                                    int> = 0>
  FMT_MAP_API auto map(T) -> unformattable_char {
    return {};
  }

  FMT_MAP_API auto map(float val) -> float { return val; }
  FMT_MAP_API auto map(double val) -> double { return val; }
  FMT_MAP_API auto map(long double val) -> long double { return val; }

  FMT_MAP_API auto map(char_type* val) -> const char_type* { return val; }
  FMT_MAP_API auto map(const char_type* val) -> const char_type* { return val; }
  template <typename T, typename Char = char_t<T>,
            FMT_ENABLE_IF(std::is_same<Char, char_type>::value &&
                          !std::is_pointer<T>::value)>
  FMT_MAP_API auto map(const T& val) -> basic_string_view<Char> {
    return to_string_view(val);
  }
  template <typename T, typename Char = char_t<T>,
            FMT_ENABLE_IF(!std::is_same<Char, char_type>::value &&
                          !std::is_pointer<T>::value)>
  FMT_MAP_API auto map(const T&) -> unformattable_char {
    return {};
  }

  FMT_MAP_API auto map(void* val) -> const void* { return val; }
  FMT_MAP_API auto map(const void* val) -> const void* { return val; }
  FMT_MAP_API auto map(volatile void* val) -> const void* {
    return const_cast<const void*>(val);
  }
  FMT_MAP_API auto map(const volatile void* val) -> const void* {
    return const_cast<const void*>(val);
  }
  FMT_MAP_API auto map(std::nullptr_t val) -> const void* { return val; }

  // Use SFINAE instead of a const T* parameter to avoid a conflict with the
  // array overload.
  template <
      typename T,
      FMT_ENABLE_IF(
          std::is_pointer<T>::value || std::is_member_pointer<T>::value ||
          std::is_function<typename std::remove_pointer<T>::type>::value ||
          (std::is_array<T>::value &&
           !std::is_convertible<T, const char_type*>::value))>
  FMT_CONSTEXPR auto map(const T&) -> unformattable_pointer {
    return {};
  }

  template <typename T, std::size_t N,
            FMT_ENABLE_IF(!std::is_same<T, wchar_t>::value)>
  FMT_MAP_API auto map(const T (&values)[N]) -> const T (&)[N] {
    return values;
  }

  // Only map owning types because mapping views can be unsafe.
  template <typename T, typename U = format_as_t<T>,
            FMT_ENABLE_IF(std::is_arithmetic<U>::value)>
  FMT_MAP_API auto map(const T& val) -> decltype(FMT_DECLTYPE_THIS map(U())) {
    return map(format_as(val));
  }

  template <typename T, typename U = remove_const_t<T>>
  struct formattable : bool_constant<has_const_formatter<U, Context>() ||
                                     (has_formatter<U, Context>::value &&
                                      !std::is_const<T>::value)> {};

  template <typename T, FMT_ENABLE_IF(formattable<T>::value)>
  FMT_MAP_API auto do_map(T& val) -> T& {
    return val;
  }
  template <typename T, FMT_ENABLE_IF(!formattable<T>::value)>
  FMT_MAP_API auto do_map(T&) -> unformattable {
    return {};
  }

  // is_fundamental is used to allow formatters for extended FP types.
  template <typename T, typename U = remove_const_t<T>,
            FMT_ENABLE_IF(
                (std::is_class<U>::value || std::is_enum<U>::value ||
                 std::is_union<U>::value || std::is_fundamental<U>::value) &&
                !has_to_string_view<U>::value && !is_char<U>::value &&
                !is_named_arg<U>::value && !std::is_integral<U>::value &&
                !std::is_arithmetic<format_as_t<U>>::value)>
  FMT_MAP_API auto map(T& val) -> decltype(FMT_DECLTYPE_THIS do_map(val)) {
    return do_map(val);
  }

  template <typename T, FMT_ENABLE_IF(is_named_arg<T>::value)>
  FMT_MAP_API auto map(const T& named_arg)
      -> decltype(FMT_DECLTYPE_THIS map(named_arg.value)) {
    return map(named_arg.value);
  }

  auto map(...) -> unformattable { return {}; }
};

// A type constant after applying arg_mapper<Context>.
template <typename T, typename Context>
using mapped_type_constant =
    type_constant<decltype(arg_mapper<Context>().map(std::declval<const T&>())),
                  typename Context::char_type>;

enum { packed_arg_bits = 4 };
// Maximum number of arguments with packed types.
enum { max_packed_args = 62 / packed_arg_bits };
enum : unsigned long long { is_unpacked_bit = 1ULL << 63 };
enum : unsigned long long { has_named_args_bit = 1ULL << 62 };

template <typename It, typename T, typename Enable = void>
struct is_output_iterator : std::false_type {};

template <> struct is_output_iterator<appender, char> : std::true_type {};

template <typename It, typename T>
struct is_output_iterator<
    It, T, void_t<decltype(*std::declval<It&>()++ = std::declval<T>())>>
    : std::true_type {};

// A type-erased reference to an std::locale to avoid a heavy <locale> include.
class locale_ref {
 private:
  const void* locale_;  // A type-erased pointer to std::locale.

 public:
  constexpr locale_ref() : locale_(nullptr) {}
  template <typename Locale> explicit locale_ref(const Locale& loc);

  explicit operator bool() const noexcept { return locale_ != nullptr; }

  template <typename Locale> auto get() const -> Locale;
};

template <typename> constexpr auto encode_types() -> unsigned long long {
  return 0;
}

template <typename Context, typename Arg, typename... Args>
constexpr auto encode_types() -> unsigned long long {
  return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) |
         (encode_types<Context, Args...>() << packed_arg_bits);
}

template <typename Context, typename... T, size_t NUM_ARGS = sizeof...(T)>
constexpr unsigned long long make_descriptor() {
  return NUM_ARGS <= max_packed_args ? encode_types<Context, T...>()
                                     : is_unpacked_bit | NUM_ARGS;
}

// This type is intentionally undefined, only used for errors.
template <typename T, typename Char>
#if FMT_CLANG_VERSION && FMT_CLANG_VERSION <= 1500
// https://github.com/fmtlib/fmt/issues/3796
struct type_is_unformattable_for {
};
#else
struct type_is_unformattable_for;
#endif

template <bool PACKED, typename Context, typename T, FMT_ENABLE_IF(PACKED)>
FMT_CONSTEXPR auto make_arg(T& val) -> value<Context> {
  using arg_type = remove_cvref_t<decltype(arg_mapper<Context>().map(val))>;

  // Use enum instead of constexpr because the latter may generate code.
  enum {
    formattable_char = !std::is_same<arg_type, unformattable_char>::value
  };
  static_assert(formattable_char, "Mixing character types is disallowed.");

  // Formatting of arbitrary pointers is disallowed. If you want to format a
  // pointer cast it to `void*` or `const void*`. In particular, this forbids
  // formatting of `[const] volatile char*` printed as bool by iostreams.
  enum {
    formattable_pointer = !std::is_same<arg_type, unformattable_pointer>::value
  };
  static_assert(formattable_pointer,
                "Formatting of non-void pointers is disallowed.");

  enum { formattable = !std::is_same<arg_type, unformattable>::value };
#if defined(__cpp_if_constexpr)
  if constexpr (!formattable)
    type_is_unformattable_for<T, typename Context::char_type> _;
#endif
  static_assert(
      formattable,
      "Cannot format an argument. To make type T formattable provide a "
      "formatter<T> specialization: https://fmt.dev/latest/api.html#udt");
  return {arg_mapper<Context>().map(val)};
}

template <typename Context, typename T>
FMT_CONSTEXPR auto make_arg(T& val) -> basic_format_arg<Context> {
  auto arg = basic_format_arg<Context>();
  arg.type_ = mapped_type_constant<T, Context>::value;
  arg.value_ = make_arg<true, Context>(val);
  return arg;
}

template <bool PACKED, typename Context, typename T, FMT_ENABLE_IF(!PACKED)>
FMT_CONSTEXPR inline auto make_arg(T& val) -> basic_format_arg<Context> {
  return make_arg<Context>(val);
}

template <typename Context, size_t NUM_ARGS>
using arg_t = conditional_t<NUM_ARGS <= max_packed_args, value<Context>,
                            basic_format_arg<Context>>;

template <typename Char, typename T, FMT_ENABLE_IF(!is_named_arg<T>::value)>
void init_named_arg(named_arg_info<Char>*, int& arg_index, int&, const T&) {
  ++arg_index;
}
template <typename Char, typename T, FMT_ENABLE_IF(is_named_arg<T>::value)>
void init_named_arg(named_arg_info<Char>* named_args, int& arg_index,
                    int& named_arg_index, const T& arg) {
  named_args[named_arg_index++] = {arg.name, arg_index++};
}

// An array of references to arguments. It can be implicitly converted to
// `fmt::basic_format_args` for passing into type-erased formatting functions
// such as `fmt::vformat`.
template <typename Context, size_t NUM_ARGS, size_t NUM_NAMED_ARGS,
          unsigned long long DESC>
struct format_arg_store {
  // args_[0].named_args points to named_args to avoid bloating format_args.
  // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
  static constexpr size_t ARGS_ARR_SIZE = 1 + (NUM_ARGS != 0 ? NUM_ARGS : +1);

  arg_t<Context, NUM_ARGS> args[ARGS_ARR_SIZE];
  named_arg_info<typename Context::char_type> named_args[NUM_NAMED_ARGS];

  template <typename... T>
  FMT_MAP_API format_arg_store(T&... values)
      : args{{named_args, NUM_NAMED_ARGS},
             make_arg<NUM_ARGS <= max_packed_args, Context>(values)...} {
    using dummy = int[];
    int arg_index = 0, named_arg_index = 0;
    (void)dummy{
        0,
        (init_named_arg(named_args, arg_index, named_arg_index, values), 0)...};
  }

  format_arg_store(format_arg_store&& rhs) {
    args[0] = {named_args, NUM_NAMED_ARGS};
    for (size_t i = 1; i < ARGS_ARR_SIZE; ++i) args[i] = rhs.args[i];
    for (size_t i = 0; i < NUM_NAMED_ARGS; ++i)
      named_args[i] = rhs.named_args[i];
  }

  format_arg_store(const format_arg_store& rhs) = delete;
  format_arg_store& operator=(const format_arg_store& rhs) = delete;
  format_arg_store& operator=(format_arg_store&& rhs) = delete;
};

// A specialization of format_arg_store without named arguments.
// It is a plain struct to reduce binary size in debug mode.
template <typename Context, size_t NUM_ARGS, unsigned long long DESC>
struct format_arg_store<Context, NUM_ARGS, 0, DESC> {
  // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
  arg_t<Context, NUM_ARGS> args[NUM_ARGS != 0 ? NUM_ARGS : +1];
};

}  // namespace detail
FMT_BEGIN_EXPORT

// A formatting argument. Context is a template parameter for the compiled API
// where output can be unbuffered.
template <typename Context> class basic_format_arg {
 private:
  detail::value<Context> value_;
  detail::type type_;

  template <typename ContextType, typename T>
  friend FMT_CONSTEXPR auto detail::make_arg(T& value)
      -> basic_format_arg<ContextType>;

  friend class basic_format_args<Context>;
  friend class dynamic_format_arg_store<Context>;

  using char_type = typename Context::char_type;

  template <typename, size_t, size_t, unsigned long long>
  friend struct detail::format_arg_store;

  basic_format_arg(const detail::named_arg_info<char_type>* args, size_t size)
      : value_(args, size) {}

 public:
  class handle {
   public:
    explicit handle(detail::custom_value<Context> custom) : custom_(custom) {}

    void format(typename Context::parse_context_type& parse_ctx,
                Context& ctx) const {
      custom_.format(custom_.value, parse_ctx, ctx);
    }

   private:
    detail::custom_value<Context> custom_;
  };

  constexpr basic_format_arg() : type_(detail::type::none_type) {}

  constexpr explicit operator bool() const noexcept {
    return type_ != detail::type::none_type;
  }

  auto type() const -> detail::type { return type_; }

  auto is_integral() const -> bool { return detail::is_integral_type(type_); }
  auto is_arithmetic() const -> bool {
    return detail::is_arithmetic_type(type_);
  }

  /**
   * Visits an argument dispatching to the appropriate visit method based on
   * the argument type. For example, if the argument type is `double` then
   * `vis(value)` will be called with the value of type `double`.
   */
  template <typename Visitor>
  FMT_CONSTEXPR FMT_INLINE auto visit(Visitor&& vis) const -> decltype(vis(0)) {
    switch (type_) {
    case detail::type::none_type:
      break;
    case detail::type::int_type:
      return vis(value_.int_value);
    case detail::type::uint_type:
      return vis(value_.uint_value);
    case detail::type::long_long_type:
      return vis(value_.long_long_value);
    case detail::type::ulong_long_type:
      return vis(value_.ulong_long_value);
    case detail::type::int128_type:
      return vis(detail::convert_for_visit(value_.int128_value));
    case detail::type::uint128_type:
      return vis(detail::convert_for_visit(value_.uint128_value));
    case detail::type::bool_type:
      return vis(value_.bool_value);
    case detail::type::char_type:
      return vis(value_.char_value);
    case detail::type::float_type:
      return vis(value_.float_value);
    case detail::type::double_type:
      return vis(value_.double_value);
    case detail::type::long_double_type:
      return vis(value_.long_double_value);
    case detail::type::cstring_type:
      return vis(value_.string.data);
    case detail::type::string_type:
      using sv = basic_string_view<typename Context::char_type>;
      return vis(sv(value_.string.data, value_.string.size));
    case detail::type::pointer_type:
      return vis(value_.pointer);
    case detail::type::custom_type:
      return vis(typename basic_format_arg<Context>::handle(value_.custom));
    }
    return vis(monostate());
  }

  auto format_custom(const char_type* parse_begin,
                     typename Context::parse_context_type& parse_ctx,
                     Context& ctx) -> bool {
    if (type_ != detail::type::custom_type) return false;
    parse_ctx.advance_to(parse_begin);
    value_.custom.format(value_.custom.value, parse_ctx, ctx);
    return true;
  }
};

template <typename Visitor, typename Context>
FMT_DEPRECATED FMT_CONSTEXPR auto visit_format_arg(
    Visitor&& vis, const basic_format_arg<Context>& arg) -> decltype(vis(0)) {
  return arg.visit(static_cast<Visitor&&>(vis));
}

/**
 * A view of a collection of formatting arguments. To avoid lifetime issues it
 * should only be used as a parameter type in type-erased functions such as
 * `vformat`:
 *
 *     void vlog(fmt::string_view fmt, fmt::format_args args);  // OK
 *     fmt::format_args args = fmt::make_format_args();  // Dangling reference
 */
template <typename Context> class basic_format_args {
 public:
  using size_type = int;
  using format_arg = basic_format_arg<Context>;

 private:
  // A descriptor that contains information about formatting arguments.
  // If the number of arguments is less or equal to max_packed_args then
  // argument types are passed in the descriptor. This reduces binary code size
  // per formatting function call.
  unsigned long long desc_;
  union {
    // If is_packed() returns true then argument values are stored in values_;
    // otherwise they are stored in args_. This is done to improve cache
    // locality and reduce compiled code size since storing larger objects
    // may require more code (at least on x86-64) even if the same amount of
    // data is actually copied to stack. It saves ~10% on the bloat test.
    const detail::value<Context>* values_;
    const format_arg* args_;
  };

  constexpr auto is_packed() const -> bool {
    return (desc_ & detail::is_unpacked_bit) == 0;
  }
  constexpr auto has_named_args() const -> bool {
    return (desc_ & detail::has_named_args_bit) != 0;
  }

  FMT_CONSTEXPR auto type(int index) const -> detail::type {
    int shift = index * detail::packed_arg_bits;
    unsigned int mask = (1 << detail::packed_arg_bits) - 1;
    return static_cast<detail::type>((desc_ >> shift) & mask);
  }

 public:
  constexpr basic_format_args() : desc_(0), args_(nullptr) {}

  /// Constructs a `basic_format_args` object from `format_arg_store`.
  template <size_t NUM_ARGS, size_t NUM_NAMED_ARGS, unsigned long long DESC,
            FMT_ENABLE_IF(NUM_ARGS <= detail::max_packed_args)>
  constexpr FMT_ALWAYS_INLINE basic_format_args(
      const detail::format_arg_store<Context, NUM_ARGS, NUM_NAMED_ARGS, DESC>&
          store)
      : desc_(DESC), values_(store.args + (NUM_NAMED_ARGS != 0 ? 1 : 0)) {}

  template <size_t NUM_ARGS, size_t NUM_NAMED_ARGS, unsigned long long DESC,
            FMT_ENABLE_IF(NUM_ARGS > detail::max_packed_args)>
  constexpr basic_format_args(
      const detail::format_arg_store<Context, NUM_ARGS, NUM_NAMED_ARGS, DESC>&
          store)
      : desc_(DESC), args_(store.args + (NUM_NAMED_ARGS != 0 ? 1 : 0)) {}

  /// Constructs a `basic_format_args` object from `dynamic_format_arg_store`.
  constexpr basic_format_args(const dynamic_format_arg_store<Context>& store)
      : desc_(store.get_types()), args_(store.data()) {}

  /// Constructs a `basic_format_args` object from a dynamic list of arguments.
  constexpr basic_format_args(const format_arg* args, int count)
      : desc_(detail::is_unpacked_bit | detail::to_unsigned(count)),
        args_(args) {}

  /// Returns the argument with the specified id.
  FMT_CONSTEXPR auto get(int id) const -> format_arg {
    format_arg arg;
    if (!is_packed()) {
      if (id < max_size()) arg = args_[id];
      return arg;
    }
    if (static_cast<unsigned>(id) >= detail::max_packed_args) return arg;
    arg.type_ = type(id);
    if (arg.type_ == detail::type::none_type) return arg;
    arg.value_ = values_[id];
    return arg;
  }

  template <typename Char>
  auto get(basic_string_view<Char> name) const -> format_arg {
    int id = get_id(name);
    return id >= 0 ? get(id) : format_arg();
  }

  template <typename Char>
  FMT_CONSTEXPR auto get_id(basic_string_view<Char> name) const -> int {
    if (!has_named_args()) return -1;
    const auto& named_args =
        (is_packed() ? values_[-1] : args_[-1].value_).named_args;
    for (size_t i = 0; i < named_args.size; ++i) {
      if (named_args.data[i].name == name) return named_args.data[i].id;
    }
    return -1;
  }

  auto max_size() const -> int {
    unsigned long long max_packed = detail::max_packed_args;
    return static_cast<int>(is_packed() ? max_packed
                                        : desc_ & ~detail::is_unpacked_bit);
  }
};

// A formatting context.
class context {
 private:
  appender out_;
  basic_format_args<context> args_;
  detail::locale_ref loc_;

 public:
  /// The character type for the output.
  using char_type = char;

  using iterator = appender;
  using format_arg = basic_format_arg<context>;
  using parse_context_type = basic_format_parse_context<char>;
  template <typename T> using formatter_type = formatter<T, char>;

  /// Constructs a `basic_format_context` object. References to the arguments
  /// are stored in the object so make sure they have appropriate lifetimes.
  FMT_CONSTEXPR context(iterator out, basic_format_args<context> ctx_args,
                        detail::locale_ref loc = {})
      : out_(out), args_(ctx_args), loc_(loc) {}
  context(context&&) = default;
  context(const context&) = delete;
  void operator=(const context&) = delete;

  FMT_CONSTEXPR auto arg(int id) const -> format_arg { return args_.get(id); }
  auto arg(string_view name) -> format_arg { return args_.get(name); }
  FMT_CONSTEXPR auto arg_id(string_view name) -> int {
    return args_.get_id(name);
  }
  auto args() const -> const basic_format_args<context>& { return args_; }

  // Returns an iterator to the beginning of the output range.
  FMT_CONSTEXPR auto out() -> iterator { return out_; }

  // Advances the begin iterator to `it`.
  void advance_to(iterator) {}

  FMT_CONSTEXPR auto locale() -> detail::locale_ref { return loc_; }
};

template <typename OutputIt, typename Char> class generic_context;

// Longer aliases for C++20 compatibility.
template <typename OutputIt, typename Char>
using basic_format_context =
    conditional_t<std::is_same<OutputIt, appender>::value, context,
                  generic_context<OutputIt, Char>>;
using format_context = context;

template <typename Char>
using buffered_context = basic_format_context<basic_appender<Char>, Char>;

template <typename T, typename Char = char>
using is_formattable = bool_constant<!std::is_base_of<
    detail::unformattable, decltype(detail::arg_mapper<buffered_context<Char>>()
                                        .map(std::declval<T&>()))>::value>;

#if FMT_USE_CONCEPTS
template <typename T, typename Char = char>
concept formattable = is_formattable<remove_reference_t<T>, Char>::value;
#endif

/**
 * Constructs an object that stores references to arguments and can be
 * implicitly converted to `format_args`. `Context` can be omitted in which case
 * it defaults to `format_context`. See `arg` for lifetime considerations.
 */
// Take arguments by lvalue references to avoid some lifetime issues, e.g.
//   auto args = make_format_args(std::string());
template <typename Context = format_context, typename... T,
          size_t NUM_ARGS = sizeof...(T),
          size_t NUM_NAMED_ARGS = detail::count_named_args<T...>(),
          unsigned long long DESC = detail::make_descriptor<Context, T...>(),
          FMT_ENABLE_IF(NUM_NAMED_ARGS == 0)>
constexpr FMT_ALWAYS_INLINE auto make_format_args(T&... args)
    -> detail::format_arg_store<Context, NUM_ARGS, 0, DESC> {
  return {{detail::make_arg<NUM_ARGS <= detail::max_packed_args, Context>(
      args)...}};
}

#ifndef FMT_DOC
template <typename Context = format_context, typename... T,
          size_t NUM_NAMED_ARGS = detail::count_named_args<T...>(),
          unsigned long long DESC =
              detail::make_descriptor<Context, T...>() |
              static_cast<unsigned long long>(detail::has_named_args_bit),
          FMT_ENABLE_IF(NUM_NAMED_ARGS != 0)>
constexpr auto make_format_args(T&... args)
    -> detail::format_arg_store<Context, sizeof...(T), NUM_NAMED_ARGS, DESC> {
  return {args...};
}
#endif

/**
 * Returns a named argument to be used in a formatting function.
 * It should only be used in a call to a formatting function or
 * `dynamic_format_arg_store::push_back`.
 *
 * **Example**:
 *
 *     fmt::print("The answer is {answer}.", fmt::arg("answer", 42));
 */
template <typename Char, typename T>
inline auto arg(const Char* name, const T& arg) -> detail::named_arg<Char, T> {
  static_assert(!detail::is_named_arg<T>(), "nested named arguments");
  return {name, arg};
}
FMT_END_EXPORT

/// An alias for `basic_format_args<format_context>`.
// A separate type would result in shorter symbols but break ABI compatibility
// between clang and gcc on ARM (#1919).
FMT_EXPORT using format_args = basic_format_args<format_context>;

// We cannot use enum classes as bit fields because of a gcc bug, so we put them
// in namespaces instead (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414).
// Additionally, if an underlying type is specified, older gcc incorrectly warns
// that the type is too small. Both bugs are fixed in gcc 9.3.
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 903
#  define FMT_ENUM_UNDERLYING_TYPE(type)
#else
#  define FMT_ENUM_UNDERLYING_TYPE(type) : type
#endif
namespace align {
enum type FMT_ENUM_UNDERLYING_TYPE(unsigned char){none, left, right, center,
                                                  numeric};
}
using align_t = align::type;
namespace sign {
enum type FMT_ENUM_UNDERLYING_TYPE(unsigned char){none, minus, plus, space};
}
using sign_t = sign::type;

namespace detail {

template <typename Char>
using unsigned_char = typename conditional_t<std::is_integral<Char>::value,
                                             std::make_unsigned<Char>,
                                             type_identity<unsigned>>::type;

// Character (code unit) type is erased to prevent template bloat.
struct fill_t {
 private:
  enum { max_size = 4 };
  char data_[max_size] = {' '};
  unsigned char size_ = 1;

 public:
  template <typename Char>
  FMT_CONSTEXPR void operator=(basic_string_view<Char> s) {
    auto size = s.size();
    size_ = static_cast<unsigned char>(size);
    if (size == 1) {
      unsigned uchar = static_cast<unsigned_char<Char>>(s[0]);
      data_[0] = static_cast<char>(uchar);
      data_[1] = static_cast<char>(uchar >> 8);
      return;
    }
    FMT_ASSERT(size <= max_size, "invalid fill");
    for (size_t i = 0; i < size; ++i) data_[i] = static_cast<char>(s[i]);
  }

  FMT_CONSTEXPR void operator=(char c) {
    data_[0] = c;
    size_ = 1;
  }

  constexpr auto size() const -> size_t { return size_; }

  template <typename Char> constexpr auto get() const -> Char {
    using uchar = unsigned char;
    return static_cast<Char>(static_cast<uchar>(data_[0]) |
                             (static_cast<uchar>(data_[1]) << 8));
  }

  template <typename Char, FMT_ENABLE_IF(std::is_same<Char, char>::value)>
  constexpr auto data() const -> const Char* {
    return data_;
  }
  template <typename Char, FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
  constexpr auto data() const -> const Char* {
    return nullptr;
  }
};
}  // namespace detail

enum class presentation_type : unsigned char {
  // Common specifiers:
  none = 0,
  debug = 1,   // '?'
  string = 2,  // 's' (string, bool)

  // Integral, bool and character specifiers:
  dec = 3,  // 'd'
  hex,      // 'x' or 'X'
  oct,      // 'o'
  bin,      // 'b' or 'B'
  chr,      // 'c'

  // String and pointer specifiers:
  pointer = 3,  // 'p'

  // Floating-point specifiers:
  exp = 1,  // 'e' or 'E' (1 since there is no FP debug presentation)
  fixed,    // 'f' or 'F'
  general,  // 'g' or 'G'
  hexfloat  // 'a' or 'A'
};

// Format specifiers for built-in and string types.
struct format_specs {
  int width;
  int precision;
  presentation_type type;
  align_t align : 4;
  sign_t sign : 3;
  bool upper : 1;  // An uppercase version e.g. 'X' for 'x'.
  bool alt : 1;    // Alternate form ('#').
  bool localized : 1;
  detail::fill_t fill;

  constexpr format_specs()
      : width(0),
        precision(-1),
        type(presentation_type::none),
        align(align::none),
        sign(sign::none),
        upper(false),
        alt(false),
        localized(false) {}
};

namespace detail {

enum class arg_id_kind { none, index, name };

// An argument reference.
template <typename Char> struct arg_ref {
  FMT_CONSTEXPR arg_ref() : kind(arg_id_kind::none), val() {}

  FMT_CONSTEXPR explicit arg_ref(int index)
      : kind(arg_id_kind::index), val(index) {}
  FMT_CONSTEXPR explicit arg_ref(basic_string_view<Char> name)
      : kind(arg_id_kind::name), val(name) {}

  FMT_CONSTEXPR auto operator=(int idx) -> arg_ref& {
    kind = arg_id_kind::index;
    val.index = idx;
    return *this;
  }

  arg_id_kind kind;
  union value {
    FMT_CONSTEXPR value(int idx = 0) : index(idx) {}
    FMT_CONSTEXPR value(basic_string_view<Char> n) : name(n) {}

    int index;
    basic_string_view<Char> name;
  } val;
};

// Format specifiers with width and precision resolved at formatting rather
// than parsing time to allow reusing the same parsed specifiers with
// different sets of arguments (precompilation of format strings).
template <typename Char = char> struct dynamic_format_specs : format_specs {
  arg_ref<Char> width_ref;
  arg_ref<Char> precision_ref;
};

// Converts a character to ASCII. Returns '\0' on conversion failure.
template <typename Char, FMT_ENABLE_IF(std::is_integral<Char>::value)>
constexpr auto to_ascii(Char c) -> char {
  return c <= 0xff ? static_cast<char>(c) : '\0';
}

// Returns the number of code units in a code point or 1 on error.
template <typename Char>
FMT_CONSTEXPR auto code_point_length(const Char* begin) -> int {
  if (const_check(sizeof(Char) != 1)) return 1;
  auto c = static_cast<unsigned char>(*begin);
  return static_cast<int>((0x3a55000000000000ull >> (2 * (c >> 3))) & 0x3) + 1;
}

// Return the result via the out param to workaround gcc bug 77539.
template <bool IS_CONSTEXPR, typename T, typename Ptr = const T*>
FMT_CONSTEXPR auto find(Ptr first, Ptr last, T value, Ptr& out) -> bool {
  for (out = first; out != last; ++out) {
    if (*out == value) return true;
  }
  return false;
}

template <>
inline auto find<false, char>(const char* first, const char* last, char value,
                              const char*& out) -> bool {
  out =
      static_cast<const char*>(memchr(first, value, to_unsigned(last - first)));
  return out != nullptr;
}

// Parses the range [begin, end) as an unsigned integer. This function assumes
// that the range is non-empty and the first character is a digit.
template <typename Char>
FMT_CONSTEXPR auto parse_nonnegative_int(const Char*& begin, const Char* end,
                                         int error_value) noexcept -> int {
  FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', "");
  unsigned value = 0, prev = 0;
  auto p = begin;
  do {
    prev = value;
    value = value * 10 + unsigned(*p - '0');
    ++p;
  } while (p != end && '0' <= *p && *p <= '9');
  auto num_digits = p - begin;
  begin = p;
  int digits10 = static_cast<int>(sizeof(int) * CHAR_BIT * 3 / 10);
  if (num_digits <= digits10) return static_cast<int>(value);
  // Check for overflow.
  unsigned max = INT_MAX;
  return num_digits == digits10 + 1 &&
                 prev * 10ull + unsigned(p[-1] - '0') <= max
             ? static_cast<int>(value)
             : error_value;
}

FMT_CONSTEXPR inline auto parse_align(char c) -> align_t {
  switch (c) {
  case '<':
    return align::left;
  case '>':
    return align::right;
  case '^':
    return align::center;
  }
  return align::none;
}

template <typename Char> constexpr auto is_name_start(Char c) -> bool {
  return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '_';
}

template <typename Char, typename Handler>
FMT_CONSTEXPR auto do_parse_arg_id(const Char* begin, const Char* end,
                                   Handler&& handler) -> const Char* {
  Char c = *begin;
  if (c >= '0' && c <= '9') {
    int index = 0;
    if (c != '0')
      index = parse_nonnegative_int(begin, end, INT_MAX);
    else
      ++begin;
    if (begin == end || (*begin != '}' && *begin != ':'))
      report_error("invalid format string");
    else
      handler.on_index(index);
    return begin;
  }
  if (!is_name_start(c)) {
    report_error("invalid format string");
    return begin;
  }
  auto it = begin;
  do {
    ++it;
  } while (it != end && (is_name_start(*it) || ('0' <= *it && *it <= '9')));
  handler.on_name({begin, to_unsigned(it - begin)});
  return it;
}

template <typename Char, typename Handler>
FMT_CONSTEXPR auto parse_arg_id(const Char* begin, const Char* end,
                                Handler&& handler) -> const Char* {
  FMT_ASSERT(begin != end, "");
  Char c = *begin;
  if (c != '}' && c != ':') return do_parse_arg_id(begin, end, handler);
  handler.on_auto();
  return begin;
}

template <typename Char> struct dynamic_spec_id_handler {
  basic_format_parse_context<Char>& ctx;
  arg_ref<Char>& ref;

  FMT_CONSTEXPR void on_auto() {
    int id = ctx.next_arg_id();
    ref = arg_ref<Char>(id);
    ctx.check_dynamic_spec(id);
  }
  FMT_CONSTEXPR void on_index(int id) {
    ref = arg_ref<Char>(id);
    ctx.check_arg_id(id);
    ctx.check_dynamic_spec(id);
  }
  FMT_CONSTEXPR void on_name(basic_string_view<Char> id) {
    ref = arg_ref<Char>(id);
    ctx.check_arg_id(id);
  }
};

// Parses [integer | "{" [arg_id] "}"].
template <typename Char>
FMT_CONSTEXPR auto parse_dynamic_spec(const Char* begin, const Char* end,
                                      int& value, arg_ref<Char>& ref,
                                      basic_format_parse_context<Char>& ctx)
    -> const Char* {
  FMT_ASSERT(begin != end, "");
  if ('0' <= *begin && *begin <= '9') {
    int val = parse_nonnegative_int(begin, end, -1);
    if (val != -1)
      value = val;
    else
      report_error("number is too big");
  } else if (*begin == '{') {
    ++begin;
    auto handler = dynamic_spec_id_handler<Char>{ctx, ref};
    if (begin != end) begin = parse_arg_id(begin, end, handler);
    if (begin != end && *begin == '}') return ++begin;
    report_error("invalid format string");
  }
  return begin;
}

template <typename Char>
FMT_CONSTEXPR auto parse_precision(const Char* begin, const Char* end,
                                   int& value, arg_ref<Char>& ref,
                                   basic_format_parse_context<Char>& ctx)
    -> const Char* {
  ++begin;
  if (begin == end || *begin == '}') {
    report_error("invalid precision");
    return begin;
  }
  return parse_dynamic_spec(begin, end, value, ref, ctx);
}

enum class state { start, align, sign, hash, zero, width, precision, locale };

// Parses standard format specifiers.
template <typename Char>
FMT_CONSTEXPR auto parse_format_specs(const Char* begin, const Char* end,
                                      dynamic_format_specs<Char>& specs,
                                      basic_format_parse_context<Char>& ctx,
                                      type arg_type) -> const Char* {
  auto c = '\0';
  if (end - begin > 1) {
    auto next = to_ascii(begin[1]);
    c = parse_align(next) == align::none ? to_ascii(*begin) : '\0';
  } else {
    if (begin == end) return begin;
    c = to_ascii(*begin);
  }

  struct {
    state current_state = state::start;
    FMT_CONSTEXPR void operator()(state s, bool valid = true) {
      if (current_state >= s || !valid)
        report_error("invalid format specifier");
      current_state = s;
    }
  } enter_state;

  using pres = presentation_type;
  constexpr auto integral_set = sint_set | uint_set | bool_set | char_set;
  struct {
    const Char*& begin;
    dynamic_format_specs<Char>& specs;
    type arg_type;

    FMT_CONSTEXPR auto operator()(pres pres_type, int set) -> const Char* {
      if (!in(arg_type, set)) {
        if (arg_type == type::none_type) return begin;
        report_error("invalid format specifier");
      }
      specs.type = pres_type;
      return begin + 1;
    }
  } parse_presentation_type{begin, specs, arg_type};

  for (;;) {
    switch (c) {
    case '<':
    case '>':
    case '^':
      enter_state(state::align);
      specs.align = parse_align(c);
      ++begin;
      break;
    case '+':
    case '-':
    case ' ':
      if (arg_type == type::none_type) return begin;
      enter_state(state::sign, in(arg_type, sint_set | float_set));
      switch (c) {
      case '+':
        specs.sign = sign::plus;
        break;
      case '-':
        specs.sign = sign::minus;
        break;
      case ' ':
        specs.sign = sign::space;
        break;
      }
      ++begin;
      break;
    case '#':
      if (arg_type == type::none_type) return begin;
      enter_state(state::hash, is_arithmetic_type(arg_type));
      specs.alt = true;
      ++begin;
      break;
    case '0':
      enter_state(state::zero);
      if (!is_arithmetic_type(arg_type)) {
        if (arg_type == type::none_type) return begin;
        report_error("format specifier requires numeric argument");
      }
      if (specs.align == align::none) {
        // Ignore 0 if align is specified for compatibility with std::format.
        specs.align = align::numeric;
        specs.fill = '0';
      }
      ++begin;
      break;
    case '1':
    case '2':
    case '3':
    case '4':
    case '5':
    case '6':
    case '7':
    case '8':
    case '9':
    case '{':
      enter_state(state::width);
      begin = parse_dynamic_spec(begin, end, specs.width, specs.width_ref, ctx);
      break;
    case '.':
      if (arg_type == type::none_type) return begin;
      enter_state(state::precision,
                  in(arg_type, float_set | string_set | cstring_set));
      begin = parse_precision(begin, end, specs.precision, specs.precision_ref,
                              ctx);
      break;
    case 'L':
      if (arg_type == type::none_type) return begin;
      enter_state(state::locale, is_arithmetic_type(arg_type));
      specs.localized = true;
      ++begin;
      break;
    case 'd':
      return parse_presentation_type(pres::dec, integral_set);
    case 'X':
      specs.upper = true;
      FMT_FALLTHROUGH;
    case 'x':
      return parse_presentation_type(pres::hex, integral_set);
    case 'o':
      return parse_presentation_type(pres::oct, integral_set);
    case 'B':
      specs.upper = true;
      FMT_FALLTHROUGH;
    case 'b':
      return parse_presentation_type(pres::bin, integral_set);
    case 'E':
      specs.upper = true;
      FMT_FALLTHROUGH;
    case 'e':
      return parse_presentation_type(pres::exp, float_set);
    case 'F':
      specs.upper = true;
      FMT_FALLTHROUGH;
    case 'f':
      return parse_presentation_type(pres::fixed, float_set);
    case 'G':
      specs.upper = true;
      FMT_FALLTHROUGH;
    case 'g':
      return parse_presentation_type(pres::general, float_set);
    case 'A':
      specs.upper = true;
      FMT_FALLTHROUGH;
    case 'a':
      return parse_presentation_type(pres::hexfloat, float_set);
    case 'c':
      if (arg_type == type::bool_type) report_error("invalid format specifier");
      return parse_presentation_type(pres::chr, integral_set);
    case 's':
      return parse_presentation_type(pres::string,
                                     bool_set | string_set | cstring_set);
    case 'p':
      return parse_presentation_type(pres::pointer, pointer_set | cstring_set);
    case '?':
      return parse_presentation_type(pres::debug,
                                     char_set | string_set | cstring_set);
    case '}':
      return begin;
    default: {
      if (*begin == '}') return begin;
      // Parse fill and alignment.
      auto fill_end = begin + code_point_length(begin);
      if (end - fill_end <= 0) {
        report_error("invalid format specifier");
        return begin;
      }
      if (*begin == '{') {
        report_error("invalid fill character '{'");
        return begin;
      }
      auto align = parse_align(to_ascii(*fill_end));
      enter_state(state::align, align != align::none);
      specs.fill =
          basic_string_view<Char>(begin, to_unsigned(fill_end - begin));
      specs.align = align;
      begin = fill_end + 1;
    }
    }
    if (begin == end) return begin;
    c = to_ascii(*begin);
  }
}

template <typename Char, typename Handler>
FMT_CONSTEXPR auto parse_replacement_field(const Char* begin, const Char* end,
                                           Handler&& handler) -> const Char* {
  struct id_adapter {
    Handler& handler;
    int arg_id;

    FMT_CONSTEXPR void on_auto() { arg_id = handler.on_arg_id(); }
    FMT_CONSTEXPR void on_index(int id) { arg_id = handler.on_arg_id(id); }
    FMT_CONSTEXPR void on_name(basic_string_view<Char> id) {
      arg_id = handler.on_arg_id(id);
    }
  };

  ++begin;
  if (begin == end) return handler.on_error("invalid format string"), end;
  if (*begin == '}') {
    handler.on_replacement_field(handler.on_arg_id(), begin);
  } else if (*begin == '{') {
    handler.on_text(begin, begin + 1);
  } else {
    auto adapter = id_adapter{handler, 0};
    begin = parse_arg_id(begin, end, adapter);
    Char c = begin != end ? *begin : Char();
    if (c == '}') {
      handler.on_replacement_field(adapter.arg_id, begin);
    } else if (c == ':') {
      begin = handler.on_format_specs(adapter.arg_id, begin + 1, end);
      if (begin == end || *begin != '}')
        return handler.on_error("unknown format specifier"), end;
    } else {
      return handler.on_error("missing '}' in format string"), end;
    }
  }
  return begin + 1;
}

template <bool IS_CONSTEXPR, typename Char, typename Handler>
FMT_CONSTEXPR void parse_format_string(basic_string_view<Char> format_str,
                                       Handler&& handler) {
  auto begin = format_str.data();
  auto end = begin + format_str.size();
  if (end - begin < 32) {
    // Use a simple loop instead of memchr for small strings.
    const Char* p = begin;
    while (p != end) {
      auto c = *p++;
      if (c == '{') {
        handler.on_text(begin, p - 1);
        begin = p = parse_replacement_field(p - 1, end, handler);
      } else if (c == '}') {
        if (p == end || *p != '}')
          return handler.on_error("unmatched '}' in format string");
        handler.on_text(begin, p);
        begin = ++p;
      }
    }
    handler.on_text(begin, end);
    return;
  }
  struct writer {
    FMT_CONSTEXPR void operator()(const Char* from, const Char* to) {
      if (from == to) return;
      for (;;) {
        const Char* p = nullptr;
        if (!find<IS_CONSTEXPR>(from, to, Char('}'), p))
          return handler_.on_text(from, to);
        ++p;
        if (p == to || *p != '}')
          return handler_.on_error("unmatched '}' in format string");
        handler_.on_text(from, p);
        from = p + 1;
      }
    }
    Handler& handler_;
  } write = {handler};
  while (begin != end) {
    // Doing two passes with memchr (one for '{' and another for '}') is up to
    // 2.5x faster than the naive one-pass implementation on big format strings.
    const Char* p = begin;
    if (*begin != '{' && !find<IS_CONSTEXPR>(begin + 1, end, Char('{'), p))
      return write(begin, end);
    write(begin, p);
    begin = parse_replacement_field(p, end, handler);
  }
}

template <typename T, bool = is_named_arg<T>::value> struct strip_named_arg {
  using type = T;
};
template <typename T> struct strip_named_arg<T, true> {
  using type = remove_cvref_t<decltype(T::value)>;
};

template <typename T, typename ParseContext>
FMT_VISIBILITY("hidden")  // Suppress an ld warning on macOS (#3769).
FMT_CONSTEXPR auto parse_format_specs(ParseContext& ctx)
    -> decltype(ctx.begin()) {
  using char_type = typename ParseContext::char_type;
  using context = buffered_context<char_type>;
  using mapped_type = conditional_t<
      mapped_type_constant<T, context>::value != type::custom_type,
      decltype(arg_mapper<context>().map(std::declval<const T&>())),
      typename strip_named_arg<T>::type>;
#if defined(__cpp_if_constexpr)
  if constexpr (std::is_default_constructible<
                    formatter<mapped_type, char_type>>::value) {
    return formatter<mapped_type, char_type>().parse(ctx);
  } else {
    type_is_unformattable_for<T, char_type> _;
    return ctx.begin();
  }
#else
  return formatter<mapped_type, char_type>().parse(ctx);
#endif
}

// Checks char specs and returns true iff the presentation type is char-like.
FMT_CONSTEXPR inline auto check_char_specs(const format_specs& specs) -> bool {
  if (specs.type != presentation_type::none &&
      specs.type != presentation_type::chr &&
      specs.type != presentation_type::debug) {
    return false;
  }
  if (specs.align == align::numeric || specs.sign != sign::none || specs.alt)
    report_error("invalid format specifier for char");
  return true;
}

#if FMT_USE_NONTYPE_TEMPLATE_ARGS
template <int N, typename T, typename... Args, typename Char>
constexpr auto get_arg_index_by_name(basic_string_view<Char> name) -> int {
  if constexpr (is_statically_named_arg<T>()) {
    if (name == T::name) return N;
  }
  if constexpr (sizeof...(Args) > 0)
    return get_arg_index_by_name<N + 1, Args...>(name);
  (void)name;  // Workaround an MSVC bug about "unused" parameter.
  return -1;
}
#endif

template <typename... Args, typename Char>
FMT_CONSTEXPR auto get_arg_index_by_name(basic_string_view<Char> name) -> int {
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
  if constexpr (sizeof...(Args) > 0)
    return get_arg_index_by_name<0, Args...>(name);
#endif
  (void)name;
  return -1;
}

template <typename Char, typename... Args> class format_string_checker {
 private:
  using parse_context_type = compile_parse_context<Char>;
  static constexpr int num_args = sizeof...(Args);

  // Format specifier parsing function.
  // In the future basic_format_parse_context will replace compile_parse_context
  // here and will use is_constant_evaluated and downcasting to access the data
  // needed for compile-time checks: https://godbolt.org/z/GvWzcTjh1.
  using parse_func = const Char* (*)(parse_context_type&);

  type types_[num_args > 0 ? static_cast<size_t>(num_args) : 1];
  parse_context_type context_;
  parse_func parse_funcs_[num_args > 0 ? static_cast<size_t>(num_args) : 1];

 public:
  explicit FMT_CONSTEXPR format_string_checker(basic_string_view<Char> fmt)
      : types_{mapped_type_constant<Args, buffered_context<Char>>::value...},
        context_(fmt, num_args, types_),
        parse_funcs_{&parse_format_specs<Args, parse_context_type>...} {}

  FMT_CONSTEXPR void on_text(const Char*, const Char*) {}

  FMT_CONSTEXPR auto on_arg_id() -> int { return context_.next_arg_id(); }
  FMT_CONSTEXPR auto on_arg_id(int id) -> int {
    return context_.check_arg_id(id), id;
  }
  FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
    auto index = get_arg_index_by_name<Args...>(id);
    if (index < 0) on_error("named argument is not found");
    return index;
#else
    (void)id;
    on_error("compile-time checks for named arguments require C++20 support");
    return 0;
#endif
  }

  FMT_CONSTEXPR void on_replacement_field(int id, const Char* begin) {
    on_format_specs(id, begin, begin);  // Call parse() on empty specs.
  }

  FMT_CONSTEXPR auto on_format_specs(int id, const Char* begin, const Char*)
      -> const Char* {
    context_.advance_to(begin);
    // id >= 0 check is a workaround for gcc 10 bug (#2065).
    return id >= 0 && id < num_args ? parse_funcs_[id](context_) : begin;
  }

  FMT_NORETURN FMT_CONSTEXPR void on_error(const char* message) {
    report_error(message);
  }
};

// A base class for compile-time strings.
struct compile_string {};

template <typename S>
using is_compile_string = std::is_base_of<compile_string, S>;

// Reports a compile-time error if S is not a valid format string.
template <typename..., typename S, FMT_ENABLE_IF(!is_compile_string<S>::value)>
FMT_ALWAYS_INLINE void check_format_string(const S&) {
#ifdef FMT_ENFORCE_COMPILE_STRING
  static_assert(is_compile_string<S>::value,
                "FMT_ENFORCE_COMPILE_STRING requires all format strings to use "
                "FMT_STRING.");
#endif
}
template <typename... Args, typename S,
          FMT_ENABLE_IF(is_compile_string<S>::value)>
void check_format_string(S format_str) {
  using char_t = typename S::char_type;
  FMT_CONSTEXPR auto s = basic_string_view<char_t>(format_str);
  using checker = format_string_checker<char_t, remove_cvref_t<Args>...>;
  FMT_CONSTEXPR bool error = (parse_format_string<true>(s, checker(s)), true);
  ignore_unused(error);
}

// Report truncation to prevent silent data loss.
inline void report_truncation(bool truncated) {
  if (truncated) report_error("output is truncated");
}

// Use vformat_args and avoid type_identity to keep symbols short and workaround
// a GCC <= 4.8 bug.
template <typename Char = char> struct vformat_args {
  using type = basic_format_args<buffered_context<Char>>;
};
template <> struct vformat_args<char> {
  using type = format_args;
};

template <typename Char>
void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt,
                typename vformat_args<Char>::type args, locale_ref loc = {});

FMT_API void vprint_mojibake(FILE*, string_view, format_args, bool = false);
#ifndef _WIN32
inline void vprint_mojibake(FILE*, string_view, format_args, bool) {}
#endif

template <typename T, typename Char, type TYPE> struct native_formatter {
 private:
  dynamic_format_specs<Char> specs_;

 public:
  using nonlocking = void;

  template <typename ParseContext>
  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const Char* {
    if (ctx.begin() == ctx.end() || *ctx.begin() == '}') return ctx.begin();
    auto end = parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx, TYPE);
    if (const_check(TYPE == type::char_type)) check_char_specs(specs_);
    return end;
  }

  template <type U = TYPE,
            FMT_ENABLE_IF(U == type::string_type || U == type::cstring_type ||
                          U == type::char_type)>
  FMT_CONSTEXPR void set_debug_format(bool set = true) {
    specs_.type = set ? presentation_type::debug : presentation_type::none;
  }

  template <typename FormatContext>
  FMT_CONSTEXPR auto format(const T& val, FormatContext& ctx) const
      -> decltype(ctx.out());
};
}  // namespace detail

FMT_BEGIN_EXPORT

// A formatter specialization for natively supported types.
template <typename T, typename Char>
struct formatter<T, Char,
                 enable_if_t<detail::type_constant<T, Char>::value !=
                             detail::type::custom_type>>
    : detail::native_formatter<T, Char, detail::type_constant<T, Char>::value> {
};

template <typename Char = char> struct runtime_format_string {
  basic_string_view<Char> str;
};

/// A compile-time format string.
template <typename Char, typename... Args> class basic_format_string {
 private:
  basic_string_view<Char> str_;

 public:
  template <
      typename S,
      FMT_ENABLE_IF(
          std::is_convertible<const S&, basic_string_view<Char>>::value ||
          (detail::is_compile_string<S>::value &&
           std::is_constructible<basic_string_view<Char>, const S&>::value))>
  FMT_CONSTEVAL FMT_ALWAYS_INLINE basic_format_string(const S& s) : str_(s) {
    static_assert(
        detail::count<
            (std::is_base_of<detail::view, remove_reference_t<Args>>::value &&
             std::is_reference<Args>::value)...>() == 0,
        "passing views as lvalues is disallowed");
#if FMT_USE_CONSTEVAL
    if constexpr (detail::count_named_args<Args...>() ==
                  detail::count_statically_named_args<Args...>()) {
      using checker =
          detail::format_string_checker<Char, remove_cvref_t<Args>...>;
      detail::parse_format_string<true>(str_, checker(s));
    }
#else
    detail::check_format_string<Args...>(s);
#endif
  }
  basic_format_string(runtime_format_string<Char> fmt) : str_(fmt.str) {}

  FMT_ALWAYS_INLINE operator basic_string_view<Char>() const { return str_; }
  auto get() const -> basic_string_view<Char> { return str_; }
};

#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
// Workaround broken conversion on older gcc.
template <typename...> using format_string = string_view;
inline auto runtime(string_view s) -> string_view { return s; }
#else
template <typename... Args>
using format_string = basic_format_string<char, type_identity_t<Args>...>;
/**
 * Creates a runtime format string.
 *
 * **Example**:
 *
 *     // Check format string at runtime instead of compile-time.
 *     fmt::print(fmt::runtime("{:d}"), "I am not a number");
 */
inline auto runtime(string_view s) -> runtime_format_string<> { return {{s}}; }
#endif

/// Formats a string and writes the output to `out`.
template <typename OutputIt,
          FMT_ENABLE_IF(detail::is_output_iterator<remove_cvref_t<OutputIt>,
                                                   char>::value)>
auto vformat_to(OutputIt&& out, string_view fmt, format_args args)
    -> remove_cvref_t<OutputIt> {
  auto&& buf = detail::get_buffer<char>(out);
  detail::vformat_to(buf, fmt, args, {});
  return detail::get_iterator(buf, out);
}

/**
 * Formats `args` according to specifications in `fmt`, writes the result to
 * the output iterator `out` and returns the iterator past the end of the output
 * range. `format_to` does not append a terminating null character.
 *
 * **Example**:
 *
 *     auto out = std::vector<char>();
 *     fmt::format_to(std::back_inserter(out), "{}", 42);
 */
template <typename OutputIt, typename... T,
          FMT_ENABLE_IF(detail::is_output_iterator<remove_cvref_t<OutputIt>,
                                                   char>::value)>
FMT_INLINE auto format_to(OutputIt&& out, format_string<T...> fmt, T&&... args)
    -> remove_cvref_t<OutputIt> {
  return vformat_to(FMT_FWD(out), fmt, fmt::make_format_args(args...));
}

template <typename OutputIt> struct format_to_n_result {
  /// Iterator past the end of the output range.
  OutputIt out;
  /// Total (not truncated) output size.
  size_t size;
};

template <typename OutputIt, typename... T,
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
auto vformat_to_n(OutputIt out, size_t n, string_view fmt, format_args args)
    -> format_to_n_result<OutputIt> {
  using traits = detail::fixed_buffer_traits;
  auto buf = detail::iterator_buffer<OutputIt, char, traits>(out, n);
  detail::vformat_to(buf, fmt, args, {});
  return {buf.out(), buf.count()};
}

/**
 * Formats `args` according to specifications in `fmt`, writes up to `n`
 * characters of the result to the output iterator `out` and returns the total
 * (not truncated) output size and the iterator past the end of the output
 * range. `format_to_n` does not append a terminating null character.
 */
template <typename OutputIt, typename... T,
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
FMT_INLINE auto format_to_n(OutputIt out, size_t n, format_string<T...> fmt,
                            T&&... args) -> format_to_n_result<OutputIt> {
  return vformat_to_n(out, n, fmt, fmt::make_format_args(args...));
}

template <typename OutputIt, typename Sentinel = OutputIt>
struct format_to_result {
  /// Iterator pointing to just after the last successful write in the range.
  OutputIt out;
  /// Specifies if the output was truncated.
  bool truncated;

  FMT_CONSTEXPR operator OutputIt&() & {
    detail::report_truncation(truncated);
    return out;
  }
  FMT_CONSTEXPR operator const OutputIt&() const& {
    detail::report_truncation(truncated);
    return out;
  }
  FMT_CONSTEXPR operator OutputIt&&() && {
    detail::report_truncation(truncated);
    return static_cast<OutputIt&&>(out);
  }
};

template <size_t N>
auto vformat_to(char (&out)[N], string_view fmt, format_args args)
    -> format_to_result<char*> {
  auto result = vformat_to_n(out, N, fmt, args);
  return {result.out, result.size > N};
}

template <size_t N, typename... T>
FMT_INLINE auto format_to(char (&out)[N], format_string<T...> fmt, T&&... args)
    -> format_to_result<char*> {
  auto result = fmt::format_to_n(out, N, fmt, static_cast<T&&>(args)...);
  return {result.out, result.size > N};
}

/// Returns the number of chars in the output of `format(fmt, args...)`.
template <typename... T>
FMT_NODISCARD FMT_INLINE auto formatted_size(format_string<T...> fmt,
                                             T&&... args) -> size_t {
  auto buf = detail::counting_buffer<>();
  detail::vformat_to<char>(buf, fmt, fmt::make_format_args(args...), {});
  return buf.count();
}

FMT_API void vprint(string_view fmt, format_args args);
FMT_API void vprint(FILE* f, string_view fmt, format_args args);
FMT_API void vprint_buffered(FILE* f, string_view fmt, format_args args);
FMT_API void vprintln(FILE* f, string_view fmt, format_args args);

/**
 * Formats `args` according to specifications in `fmt` and writes the output
 * to `stdout`.
 *
 * **Example**:
 *
 *     fmt::print("The answer is {}.", 42);
 */
template <typename... T>
FMT_INLINE void print(format_string<T...> fmt, T&&... args) {
  const auto& vargs = fmt::make_format_args(args...);
  if (!detail::use_utf8()) return detail::vprint_mojibake(stdout, fmt, vargs);
  return detail::is_locking<T...>() ? vprint_buffered(stdout, fmt, vargs)
                                    : vprint(fmt, vargs);
}

/**
 * Formats `args` according to specifications in `fmt` and writes the
 * output to the file `f`.
 *
 * **Example**:
 *
 *     fmt::print(stderr, "Don't {}!", "panic");
 */
template <typename... T>
FMT_INLINE void print(FILE* f, format_string<T...> fmt, T&&... args) {
  const auto& vargs = fmt::make_format_args(args...);
  if (!detail::use_utf8()) return detail::vprint_mojibake(f, fmt, vargs);
  return detail::is_locking<T...>() ? vprint_buffered(f, fmt, vargs)
                                    : vprint(f, fmt, vargs);
}

/// Formats `args` according to specifications in `fmt` and writes the output
/// to the file `f` followed by a newline.
template <typename... T>
FMT_INLINE void println(FILE* f, format_string<T...> fmt, T&&... args) {
  const auto& vargs = fmt::make_format_args(args...);
  return detail::use_utf8() ? vprintln(f, fmt, vargs)
                            : detail::vprint_mojibake(f, fmt, vargs, true);
}

/// Formats `args` according to specifications in `fmt` and writes the output
/// to `stdout` followed by a newline.
template <typename... T>
FMT_INLINE void println(format_string<T...> fmt, T&&... args) {
  return fmt::println(stdout, fmt, static_cast<T&&>(args)...);
}

FMT_END_EXPORT
FMT_GCC_PRAGMA("GCC pop_options")
FMT_END_NAMESPACE

#ifdef FMT_HEADER_ONLY
#  include "format.h"
#endif
#endif  // FMT_BASE_H_